
JDOM and XML Parsing, Part 2
JDOM makes XML manipulation in Java easier than ever.

n the first article of this series, I introduced JDOM,
an open source library for Java-optimized XML
data manipulations. I explained how this
alternative document object model was not built
on DOM or modeled after DOM but was created to
be Java-specific and thereby take advantage of Java’s

features, including method overloading, collections,
reflection, and familiar programming idioms. I covered
the important classes and started examining how to use
JDOM in your applications. In this article, I’ll take a look
at XML Namespaces, ResultSetBuilder, XSLT, and XPath.

WORKING WITH NAMESPACES
JDOM provides robust, native support for XML
Namespaces. JDOM was created after the namespace
recommendation was published, so unlike other APIs
there’s no pre-namespace and deprecated leftovers. (See
the sidebar “XML Namespaces” for more on namespaces.)
In JDOM, namespaces are represented by a Namespace
class:

Namespace xhtml = Namespace.getNamespace(

"xhtml", "http://www.w3.org/1999/xhtml");

During construction, an object is given a name and can
optionally be given a namespace:

elt.addContent(new Element("table", xhtml));

If no namespace is given, the element is constructed
in “no namespace.” An element’s namespace is an
intrinsic part of its type, so JDOM ensures that its
namespace doesn’t change when it moves around the
document. If an element has no namespace and moves
under an element that has a namespace, it explicitly does
not inherit the namespace. Sometimes that causes
confusion until you learn to separate the textual
representation from the semantic structure.

The XMLOutputter class sorts out the namespace
issues and ensures placement of all the “xmlns”
declarations into the appropriate locations, even after a
document’s elements have been heavily shuffled around.
By default, the class places the declarations where
they’re first necessary. If you want them declared further
up the tree (in other words, all declarations at the root),
you can use the element.addNamespaceDeclaration()
method to provide that guidance.

All JDOM element or attribute accessor methods

support an optional namespace argument indicating the
namespace in which to look. This example points to the
xhtml namespace:

List kids = html.getChildren("title", xhtml);

Element kid = html.getChild("title", xhtml);

Attribute attr = kid.getAttribute("id", xhtml);

When calling accessor methods it’s only the Uniform
Resource Identifiers (URI) that matters. That’s because of
how XML Namespaces work.

If no namespace instance is provided to the accessor
methods, the search looks for elements without a
namespace. JDOM uses a very literal representation. No
namespace means no namespace, not “the parent’s
namespace” or anything fancy that might be subject to
later subtle bugs.

MORE ABOUT RESULTSETBUILDER
ResultSetBuilder is an extension to JDOM created for
people who need to treat a SQL result as an XML
document. Look for it in the jdom-contrib repository in
the org.jdom.contrib.input package.

The ResultSetBuilder constructor accepts a java.sql
.ResultSet as input and returns an org.jdom.Document
from its build() method.

Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery("select id, name from

registry");

ResultSetBuilder builder = new ResultSetBuilder(rs);

Document doc = builder.build();

I

7 0 N O V E M B E R / D E C E M B E R 2 0 0 2 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

G
E

TT
Y

O
N

E
/E

Y
E

W
IR

E

J D O M A N D X M L PA R S I N G

If you don’t provide any special configuration
information, the above code constructs a document
similar to the following:

<result>

<entry>

<id>1</id>

<name>Alice</name>

</entry>

<entry>

<id>2</id>

<name>Bob</name>

</entry>

</result>

The ResultSetBuilder class uses the query’s
ResultSet MetaData to determine the column names and
uses
them as the element names. By default, the root
element has the name “result,” and each row has
the name “entry.” These names can be changed with
setRootName(String name) and setRowName(String name).
You can also assign a namespace for the document
with setNamespace (Namespaces).

If you want a resultset column represented as an XML
attribute instead of an element, you can call
setAsAttribute (StringcolumnName) or
setAsAttribute(StringcolumnName, String attribName)—
the latter method changes the name of the attribute. You
can also rename elements using setAsElement (String
columnName, String elemName). Both of these calls accept
numbered indexes instead of names, if you prefer. The
following code snippet uses these calls to reformat the
generated document:

ResultSetBuilder builder = new ResultSetBuilder(rs);

builder.setAsAttribute("id");

builder.setAsElement("name", "fname");

Document doc = builder.build();

<result>

<entry id="1">

<fname>Alice</fname>

</entry>

<entry id="2">

<fname>Bob</fname>

</entry>

</result>

The class doesn’t provide any mechanism to store XML

documents in a database for later retrieval or to make
XQuery calls against data in the database. To accomplish
these tasks, you would need a native XML database, such
as Oracle9i’s feature set, XML DB.

BUILT-IN XSLT
Now that we’ve covered the basics of the core library,
let’s look at some higher-level features, such as eXtensible
Stylesheet Language Transformation (XSLT) language.

XSLT provides a standard way to convert XML content
from one format into another, using an XML file to handle
the conversion. It’s commonly used in presenting XML as
an XHTML Web page, or in changing XML between one
schema and another. JDOM provides built-in support for
in-memory XSLT transformations, using the JAXP standard
interface to XSLT engines. The key classes are JDOMSource
and JDOMResult in the org.jdom.transform package.
JDOMSource provides a JDOM document as input to the
translation; JDOMResult catches the results as a JDOM
document. Listing 1 demonstrates a complete program that

O
R

A
C

L
E

D
E

V
E

LO
P

E
R

BY JASON HUNTER

O R A C L E M A G A Z I N E N O V E M B E R / D E C E M B E R 2 0 0 2 7 1

Namespaces can be a tricky business in XML. The goal of
namespaces is similar to that of Java packages, where two

classes with the same name can be differentiated by their package.
Yet few people really understand what the following means:
<xhtml:html xmlns:xhtml="http://www.w3.org/1999/ xhtml">

<xhtml:title>Home Page</xhtml:title>

</xhtml:html>

Here’s the short summary. In the <html> element, the
“xmlns:xhtml=” attribute name is special. It’s a namespace
declaration. It indicates that “xhtml” (or whatever comes after
“xmlns:”) should be an alias for the URI that appears in the attribute’s
value. Specifically, it means that for that element and any content
under the declaring element, the “xhtml” prefix on a name means the
item is in the “http://www.w3.org/1999/xhtml” namespace.

That namespace looks like a Web address, but it’s not. It’s just
a string. And it’s important to note that “xhtml” is an alias and not
the namespace itself. There’s a special namespace called the
“default namespace.” It’s the namespace without a prefix. By using
a default namespace, the earlier xhtml content could be written yet
another way:

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Home Page</title>

</html>

If the “xmlns=” declaration did not exist in this XML, the
elements would reside in “no namespace.” In many ways, it’s like
the default package in Java.

X M L N A M E S PA C E S

performs an in-memory transformation.
You can mix and match various source and result

implementations. For example, if you know you’re only going
to output the document and don’t need the in-memory JDOM
representation, you could use an import
javax.xml.transform.stream.StreamResult instead:

JDOMSource source = new JDOMSource(doc);

StreamResult result = new StreamResult(System.out);

transformer.transform(source, result);

The downside is you lose the nice XMLOutputter formatting.

XPATH INCLUDED
XPath provides a mechanism for referring to parts of an XML
document by using a string lookup path. Using XPath, you
can avoid walking a document and extract just the
information you want based on simple path expressions. In
code releases after Beta 8, JDOM provides built-in support for
XPath using the org.jdom.xpath.XPath class. To use it, you first
construct an XPath instance by calling XPath.newInstance()
with an expression to compile:

XPath xpath = XPath.newInstance("/some/xpath");

Then you call selectNodes() to get a List of answers based

at a given context. The context can, for example, be the
document or an element within the document.

List results = xpath.selectNodes(doc);

There are other methods for retrieving single nodes,
number values, string values, and such. The default XPath
implementation uses Jaxen from http://jaxen.org.

The code in Listing 2 (online at otn.oracle.com/
oraclemagazine) uses XPath to pull information from a servlet
deployment descriptor web.xml file. Given a web.xml file, as
shown in Listing 3 (online at otn.oracle.com/oraclemagazine),
the output looks like this:

This WAR has 2 registered servlets:

snoop for SnoopServlet (it has 0 init params)

file for ViewFile (it has 1 init params)

This WAR contains 3 roles:

manager

director

president

NEW FEATURES OF JDOM BETA 9
JDOM is at Beta 8, with the next beta release producing a near-
final API. Some API changes for the Beta 9 release are:
■ Expose a mechanism to easily iterate over the entire
document tree.
■ Expose the Filter interface currently used internally so a
programmer can walk only the parts of the tree that satisfy a
given programmatic filter rule.
■ Include a base interface to aid in these traversal models, to
allow for detaching content without knowing its exact type.
■ Provide a class to simplify XSLT transformations and hide the
JAXP calls.
■ Finalize a mechanism to handle outputting of characters not
actually available in the programmer-selected output charset.

JDOM allows Java programmers to easily and effectively
interact with XML. It was created to be easy to learn, powerful,
and natural for Java programmers. It’s released under open
source with a commercial-friendly license, so it’s free to use; it
integrates well with JAXP, DOM, and SAX; it is an official JSR
overseen by the Java Community Process. ■

Jason Hunter is publisher of Servlets.com and vice president of the Apache

Software Foundation, and he holds a seat on the JCP Executive Committee.

7 2 N O V E M B E R / D E C E M B E R 2 0 0 2 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

J D O M A N D X M L PA R S I N G

codeLISTING 1: XSL Transform

import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;
import org.jdom.transform.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XSLTransform {

public static void main(String[] args) throws Exception {
// Build the base document, just assume we get 2 params
String docname = args[0];
String sheetname = args[1];
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(docname);

// Use JAXP to get a transformer
Transformer transformer = TransformerFactory.newInstance()

.newTransformer(new StreamSource(sheetname));

// Run the transformation
JDOMSource source = new JDOMSource(doc);
JDOMResult result = new JDOMResult();
transformer.transform(source, result);
Document doc2 = result.getDocument();

// Display the results
XMLOutputter outp = new XMLOutputter();
outp.setTextNormalize(true);
outp.setIndent(" ");
outp.setNewlines(true);
outp.output(doc2, System.out);

}
}

LEARN more about JDOM
Visit the JDOM project home to download software, read documentation, read the FAQ,
sign up for mailing lists, and join the development discussion. Remember to read the FAQ
before joining the discussion. Find out more at http://jdom.org.

MEET Jason Hunter
Meet Jason Hunter at OTN’s OracleWorld booth. For more information and to register, go
to oracle.com/start and enter keyword OW2002.

nextSTEPS

