
O R A C L E M A G A Z I N E M A R C H / A P R I L 2 0 0 3 6 5

ON THE SERVER SIDE: EMBEDDING
RSS IN A WEB PAGE
The following application pulls RSS data
from either a local file or a remote URL
and displays it as a formatted list in a
section of an HTML page. The applica-
tion must meet the following require-
ments: support both RSS 0.91 (a widely
used form, which is much simpler than
1.0) and the Meerkat XML format, allow
nonprogrammer configuration of the
generated HTML, and cache the content
with updates every 30 minutes. You can
see the code in use on the front page of
Servlets.com; the “What’s New” section
is driven by the http://www.servlets.com/
blog/index-short.xml RSS data file. The
data file itself is autogenerated by the
MovableType blog tool.

For implementation tools, I’m going to
use JDOM to read the XML, a servlet con-
tainer or application server to serve the
content, and the “Tea” framework to
handle the display. Odds are, you haven’t
heard of Tea. Disney created the Tea
framework for use on its high-traffic sites
such as ESPN.com and ABCNews.com,
which are constantly updated, and the
company released it under an open-
source license a couple of years ago. Tea
supports an elegant development model

blog/index-jdom
.xml. It’s not a Web
page; it’s an XML
file containing
structured links.
Listing 1 shows an
RSS format example
that covers JDOM.

The RSS name
stands for RDF site
summary, rich site
summary, or really
simple syndication,
depending on
whom you ask.
There are also several dialects of RSS in
active use, varying from simple and easy
(the older forms) to extensible and com-
plicated (the newer forms).

Meerkat, launched by the O’Reilly
Network in 2000 as a free service, pulls
together the disparate RSS feeds on the
internet and makes them centrally avail-
able and searchable. Do you want to
know about every article on servlets
posted in the last 21 days? You can
query the Meerkat Web interface or,
once you learn the query string pattern,
make a direct request.

Meerkat pulls RSS from syndicators
and outputs to searchers in formats
including RSS, XML, and HTML. For my
example, I’ll be consuming Meerkat
content in its custom XML format,
which is similar to RSS but adds extra
category, channel, and time stamp infor-
mation. The following is a sample
Meerkat query:

http://www.oreillynet.com/meerkat/?t=21

DAY&c=5812&_fl=xml

The query string parameters request
the last 21 days of channel 5812 (OTN)
in XML format. Listing 2 shows the
report generated by the sample query.

I
n the first two parts of this series
(Oracle Magazine, September/
October 2002 and November/
December 2002), I introduced

JDOM, an open-source library for Java-
optimized XML manipulation, and gave
an overview of its design, features, and
interfaces. In this article, I show two
practical applications developed using
JDOM to handle RDF site summary
(RSS) news feed processing. Note that
due to space considerations, some of the
code referenced in this article appears
only in the online version of this article,
at otn.oracle.com/oramag/oracle/03-mar.

The first application shows how to
build a server-side component to display
RSS feeds on a Web site as a list that can
be plugged into any page. RSS is one of
the most widely used applications of
XML, helpful for everything from
announcing new Web log entries to
sharing links to new magazine articles.
With practical code examples, I’ll show
you how JDOM helps parse the RSS XML.

The second application is a client-
side component that consumes RSS
feeds and e-mails interested parties
when new content appears. It’s config-
ured using an XML file, so I’ll show you
how to use JDOM at startup to read
configuration information and to manip-
ulate the incoming RSS.

RSS AND MEERKAT
RSS is a Web syndication format based
on XML. It’s a simple format allowing
Web sites to publish a list of links with
titles and descriptions that other sites or
third-party clients can access and use.
Using RSS, newspapers spread links,
Web loggers (called bloggers, for short)
announce their posts, and everyone
keeps up with what’s new. Interested in
JDOM? With RSS, you can track the
latest JDOM links at www.servlets.com/

JDOM in the Real World, Part 3
This installment shows how to use JDOM inside your own Java programs.

d e v e l o p e r JAVA XML
■

BY JASON HUNTER

MA.03_DeveloperJDOM 1/17/03 4:12 PM Page 65

and an advanced integrated development
environment (IDE) called Kettle and com-
piles Tea pages directly to Java bytecode
(no intermediary servlet class is neces-
sary). It works with any servlet container.

Listing 3 shows our first class, Story.
It holds information for one story: id,
title, link, description, category, channel,
and time stamp.

Listing 4 (available with the online
version of this article) contains the main
logic class, MeerkatContext. It acts as a
back end for Tea templates. Every public
method in this class gets exposed to the
Tea front end. The class has just one
public method, getStories (String),
which takes a URL and returns an array
of Story objects. The class supports URLs
with either “http:” or “file:” protocols and
supports content in either RSS or Meerkat
XML format. The class caches each URL’s
content in the storyCache map, with the
corresponding time stamps in the
timeCache map. Only if the storyCache is
empty or the time stamp is greater than
“halfHour Ago” will new content be
fetched. Notice how the class caches
content internally and doesn’t rely on
external crontab entries. Crontabs, while
heavily used, are external to the Web
server and don’t move easily between
machines. Thus, they should be avoided
whenever possible.

To read the content, the Meerkat
Context class gets an InputStream with
getStoryStream() and then in getStory
Document() uses SAXBuilder to build a
JDOM representation of the content.
The getStoryList() method quickly
walks the JDOM tree converting JDOM
Element objects into Story objects. The
getChildText() method is heavily used
to directly read child text content.

There are two code paths, one for
Meerkat files and one for RSS files. The
RSS path loads less information because
less is available, although you’ll notice
that the getTimestampComment() method
supports reading a time stamp out of a
leading XML comment. This method is a
custom RSS extension that helps
Servlets.com display a date at the
bottom of entries.

The meerkat.tea template file appears
in Listing 5. This file pulls on the Meerkat
class back end to render customizable

JAVA XML

codeLISTING 1: RSS format example for JDOM content

<?xml version=”1.0”?>
<rss version=”0.91”>

<channel>
<title>Servlets.com Weblog</title>
<link>http://www.servlets.com/blog/</link>
<description>Java, Open Source, XML, Web Services, and

(gasp) .NET</description>
<language>en-us</language>

<item>
<!— 2002-08-31 22:54 —>
<title>JDOM in Oracle Magazine</title>
<description>The Sept/Oct issue of Oracle Magazine has an introductory article on JDOM
covering Beta 8. The article is freely available online. It provides good coverage
for newbies as well as some historical stories and advanced tricks.</description>

<link>http://www.servlets.com/blog/archives/000031.html</link>
</item>

<item>
<!— 2002-03-29 20:42 —>
<title>XPath Class in JDOM</title>
<description>JDOM now includes built-in XPath support with the
org.jdom.xpath.XPath class. Here’s how it works.</description>

<link>http://www.servlets.com/blog/archives/000019.html</link>
</item>

<!— ... Many more items ... —>

</channel>
</rss>

codeLISTING 2: Report from Meerkat query

<?xml version=”1.0”?>
<!DOCTYPE meerkat_xml_flavour SYSTEM
“http://meerkat.oreillynet.com/dtd/meerkat_xml_flavour.dtd”>

<meerkat>
<title>Meerkat: An Open Wire Service</title>
<link>http://meerkat.oreillynet.com</link>
<language>en-us</language>
<!— ... —>

<story id=”1026581”>
<title>Logging and Debugging with Oracle9iAS Containers for J2EE</title>
<link>http://otn.oracle.com/tech/java/oc4j/htdocs/oc4j-logging-debugging-
technote.html</link>

<description>This technical note describes the debugging and logging options available
in OC4J and how to make use of them in both standalone and complete Oracle9iAS
environment.</description>

<category>Server: Database</category>
<channel>Oracle Technology Network</channel>
<timestamp>2002-10-17 10:49:00</timestamp>

</story>

<story id=”1026580”>
<title>Compete for the title of OTN TopCoder Wednesday at 6:30 pm PDT</title>
<link>http://otn.oracle.com/topcoder</link>
<description>The time has come! Compete against Java programmers in the worldwide OTN
community for the title of OTN TopCoder in a new online programming competition. The
coding starts promptly at 6:30 pm PDT Wednesday. All participants need to reserve their
spots in the Competition Arena during the 3 hours prior to the start of the
competition.</description>

<category>Server: Database</category>
<channel>Oracle Technology Network</channel>
<timestamp>2002-10-16 21:08:00</timestamp>

</story>

<!— ... —>
</meerkat>

6 6 M A R C H / A P R I L 2 0 0 3 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

MA.03_DeveloperJDOM 1/17/03 4:12 PM Page 66

O R A C L E M A G A Z I N E M A R C H / A P R I L 2 0 0 3 6 7

version of this article) shows the Config
class, which is responsible for loading the
blogalert.xml data file and returning the
information with the getMailHost() and
getMailings() methods. Almost the entire
class consists of JDOM calls.

The Mailing class in Listing 10 (avail-
able with the online version of this article)
represents each configured mailing item
and makes available to the main logic the
mailing’s id, type, RSS location, sender,
recipient, subject, footer, time stamp,
current stories, previous stories, and
pending stories. The class also has logic to
determine if it’s time to send and has a
send() method that initiates the sending.

Notice that the previous and pending
story lists are maintained as external
XML files (mailingname.lastrss and mail-
ingname.pending) in the Mailing class.
The reading and writing of these lists is
managed by the Story class—discussed
later—an enhanced version of the class
shown earlier running on the server side.
For a time stamp, the Mailing class uses a
mailingname.timestamp file storing a
string representation of the time. It’s sep-
arate and readable because, as an admin-
istrator, I find it sometimes useful to
tweak the time—for example, to force-

Subjects and footers support %title,
%category, and %date substitutions. Listing
7 (available with the online version of this
article) shows an example that gives
instant notice of Servlets.com changes,
weekly notices of JDOM changes, and
daily notices of XMLHack changes.

The application code starts in Listing
8 (available with the online version of
this article), which shows the BlogAlert
class, holding the main() entry point
and coordinating the processes. It
starts by loading the configuration file
(blogalert.xml) into a Config object.

Then the handleMailing() method
follows a multistep algorithm. It gets the
current list of stories from the RSS feed,
loads the previous list of stories from disk,
stores the current list to be the previous
list for the next time handleMailing() is
called, and then determines what new
stories have appeared. Next, the logic
determines what stories were pending
(new but not sent out yet) and removes
from the current list any in the pending
list. Then handleMailing() creates and sets
a new pending list and looks to see if it’s
time to send the e-mail. If so, it sorts the
pending list and sends an e-mail.

Listing 9 (available with the online

HTML. The template accepts a URL to its
“constructor” that gets passed using a
request parameter (/meerkat.tea?url=xxx)
or another template’s direct call. If there’s
no URL, it sets the default URL to the
ONJava feed. The template then cus-
tomizes how dates and null values should
be displayed. Next, it makes the call into
the back end to retrieve the Story objects.
If the array is null or empty, an error is
printed in the page; otherwise the tem-
plate loops over the array, printing HTML
for each entry. Templates have access to
the bean properties on all objects
returned by functions using the syntax
<% bean.property %>.

The following code concludes our
application with a portion of an index.tea
page that would call on meerkat.tea.

<!— page snippet —>

What’s New at OTN

<% call meerkat(

“http://otn.oracle.com/ws/otnrss.xml”)

%>

Any Tea template page can add an
automatically updating RSS or Meerkat
data feed with one simple <% call
meerkat(url) %> command. Behind the
scenes, JDOM takes care of the XML
parsing, Tea takes care of the templating,
Meerkat handles the collection, and
servlets glue it all together.

ON THE CLIENT SIDE: BLOG ALERT
My sample client-side application,
which I call Blog Alert, consumes RSS
and Meerkat feeds and, after detecting a
change, sends e-mail notifications to
interested parties. It supports instant
notification or allows updates to be
queued for daily or weekly digest mails.
The e-mails can have customized subjects
and footers with substitution rules allow-
ing the insertion of title, category, and
date information. Listing 6 shows what
e-mail notifications look like.

Blog Alert runs off an external XML-
based configuration file that provides the
mail host information (for sending mails)
and a set of mailing entries. Each mailing
has a type (instant, daily, weekly), an RSS
source, an e-mail sender address, an e-
mail recipient address (such as a mailing
list), a subject, and an optional footer.

codeLISTING 3: Story class

import java.util.Date;

public class Story {
private String id;
private String title;
private String link;
private String description;
private String category;
private String channel;
private Date timestamp;

public Story(String id, String title, String link, String desc,
String category, String channel, Date timestamp) {

this.id = id;
this.title = title;
this.link = link;
this.desc= desc;
this.category = category;
this.channel = channel;
this.timestamp = timestamp;

}

public String getId() { return id; }
public String getTitle() { return title; }
public String getLink() { return link; }
public String getDescription() { return description; }
public String getCategory() { return category; }
public String getChannel() { return channel; }
public Date getTimestamp() { return timestamp; }

}

MA.03_DeveloperJDOM 1/17/03 4:12 PM Page 67

6 8 M A R C H / A P R I L 2 0 0 3 O T N . O R A C L E . C O M / O R A C L E M A G A Z I N E

Run the BlogAlert class periodically
and watch as BlogAlert pulls down RSS
feeds, examines the feeds for new mate-
rial, and fires notifying e-mails when
appropriate. You’ll see how JDOM helps
read the configuration file, handles the
incoming RSS feeds, and supports the
outgoing RSS storage duties.

JDOM is a simple and straightforward
way to handle XML files with Java.
Written in and for Java, JDOM provides
you with an intuitive way to read, write,
and manipulate XML documents. Best of
all, JDOM has been published under an
open-source Apache-style license with a
wide user and developer community that
has developed the application-program-
ming interface (API) to solve real-world
problems. JDOM is also in the process of
going through Sun’s Java Community
Process (JCP) as a Java Specification
Request (JSR)—the first open-source
project to become a JSR.

YOUR TURN
This article walks you through two prac-
tical uses of XML and JDOM for manip-
ulating an RSS news feed. They’re
inspired by my real-life needs managing
the Servlets.com site, and I hope the use
of JDOM in these examples can help
you with your real-life needs too. ■

Jason Hunter (jasonhunter@servlets.com) is a con-

sultant, a publisher of Servlets.com, and a vice

president of the Apache Software Foundation. He also

holds a seat on the Java Community Process (JCP)

Executive Committee.

write story lists to and from files and
includes a Comparable interface to support
date-based sorting.

The setStoryList(List, File)
method contains the bulk of the new
Story class logic. This method constructs
an in-memory, JDOM-modeled, RSS-
style document from the passed-in Story
list and uses JDOM’s XMLOutputter to
pretty-print the information for display
to a local file. These files support the
retrieval of previous and pending
entries. I could have kept the original
RSS or Meerkat feed around, but given
how easy it is to use JDOM to create
XML output, it’s not worth the bother.

send a weekly message. The
isTimeToSend() method looks at the
mailing type and how much time has
elapsed and returns a boolean. The
send() method uses the MailSender class
to send e-mails and a WrapFormat class to
handle consistent indenting. (These two
classes are interesting but orthogonal to
the point of this article; for their code, go
to otn.oracle.com/oramag/oracle/03-mar.)

The last class I’ll examine, in Listing 11
(available with the online version of
this article), is a grown-up version of
the Story class, based on the simple Story
class I presented earlier. Now it’s
enhanced with methods to read and

JAVA XML

DOWNLOAD
code examples
www.servlets.com

JDOM
jdom.org

Meerkat
www.oreillynet.com/meerkat

RSS
www.oreillynet.com/rss

Servlets
www.servlets.com

Tea
teatrove.sourceforge.net

MovableType
www.movabletype.org

READ online-only article content
otn.oracle.com/oraclemagazine

nextSTEPS

codeLISTING 5: meerkat. tea template

<% template meerkat(String url)
storyURL = “http://www.oreillynet.com/meerkat/?t=21DAY&c=5136&_fl=xml”;
if (url != null) { storyURL = url; }

// Specify how time/numbers are formatted
dateFormat(“d MMMM yyyy”)
nullFormat(“”)

stories = getStories(storyURL);
if (stories == null or stories.length == 0) {

“<i>No stories currently available</i>”
}
else {

foreach (story in stories) {
%>

<a href=”<% story.link %>”
<% if (findFirst(story.link, “servlets.com”) == -1) {

‘target=”meerkat”’
}

%>
> <% story.title %>
 <% story.description %>
<i><% story.timestamp %></i> <p />

<%
}

}
%>

codeLISTING 6: BlogAlert generated e-mail example

Subject: Servlets.com: Blog update for week of July 25th, 2002
From: blogalert@servlets.com

To: jhunter-blog@dorothy.denveronline.net

Open Java at JavaOne
http://www.servlets.com/blog/archives/000020.html

The Apache-Sun agreement caused quite a buzz at JavaOne this year.
Here’s my behind-the-scenes look at how the public events unfolded.

More File Upload Improvements
http://www.servlets.com/blog/archives/000027.html

There’s a new update to the com.oreilly.servlet library available.
This release polishes the pluggable renaming logic to provide...

—
To subscribe or unsubscribe, go to
http://www.servlets.com/lists/subscribe.html

MA.03_DeveloperJDOM 1/17/03 4:12 PM Page 68

