
Java + XML = JDOMJava + XML = JDOM

by Jason Hunterby Jason Hunter
and Brett McLaughlinand Brett McLaughlin

Enterprise Java O’Reilly ConferenceEnterprise Java O’Reilly Conference
March, 2001March, 2001

IntroductionsIntroductions

Jason HunterJason Hunter
jhunterjhunter@@collabcollab.net.net
CollabNetCollabNet
http://http://collabcollab.net.net
http://http://servletsservlets.com.com

Author ofAuthor of
"Java Servlet Programming""Java Servlet Programming"
(O'Reilly)(O'Reilly)

IntroductionsIntroductions

Brett McLaughlinBrett McLaughlin
brettbrett@@jdomjdom.org.org
Lutris TechnologiesLutris Technologies
http://http://enhydraenhydra.org.org

 http://www. http://www.newInstancenewInstance.com.com

Author ofAuthor of
"Java and XML""Java and XML"
(O'Reilly)(O'Reilly)

What is JDOM?What is JDOM?

•• JDOM is a way to represent an XML document forJDOM is a way to represent an XML document for
easy and efficient reading, manipulation, and writingeasy and efficient reading, manipulation, and writing
–– Straightforward APIStraightforward API
–– Lightweight and fastLightweight and fast
–– Java-optimizedJava-optimized

•• Despite the name similarity, it's not build on DOM orDespite the name similarity, it's not build on DOM or
modeled after DOMmodeled after DOM
–– Although it integrates well with DOM and SAXAlthough it integrates well with DOM and SAX

•• An open source project with an Apache-style licenseAn open source project with an Apache-style license
–– 10501050 developers on developers on jdom jdom-interest (high traffic)-interest (high traffic)
–– 900900 lurkers on lurkers on jdom jdom-announce (low traffic)-announce (low traffic)

The JDOM StoryThe JDOM Story

•• XML Tutorial at Enterprise Java Conference, 2000XML Tutorial at Enterprise Java Conference, 2000
–– Brett details usage of DOMBrett details usage of DOM
–– Jason scratches headJason scratches head
–– Brett and Jason share DOM war storiesBrett and Jason share DOM war stories
–– Decision to create JDOM is madeDecision to create JDOM is made

•• ArchitectureArchitecture
–– Initially based on interfacesInitially based on interfaces
–– Reviewed by James Davidson (Sun) and PierReviewed by James Davidson (Sun) and Pier

Fumagalli Fumagalli (Apache)(Apache)
–– Moved to concrete classesMoved to concrete classes
–– Released Alpha version to communityReleased Alpha version to community

The JDOM PhilosophyThe JDOM Philosophy

•• JDOM should be straightforward for Java programmersJDOM should be straightforward for Java programmers
–– Use the power of the language (Java 2)Use the power of the language (Java 2)
–– Take advantage of method overloading, theTake advantage of method overloading, the

Collections APIs, reflection, weak referencesCollections APIs, reflection, weak references
–– Provide conveniences like type conversionsProvide conveniences like type conversions

•• JDOM should hide the complexities of XML whereverJDOM should hide the complexities of XML wherever
possiblepossible
–– An Element has content, not a child Text node withAn Element has content, not a child Text node with

contentcontent
–– Exceptions should contain useful error messagesExceptions should contain useful error messages
–– Give line numbers and specifics, use no SAX orGive line numbers and specifics, use no SAX or

DOM specificsDOM specifics

More JDOM PhilosophyMore JDOM Philosophy

•• JDOM should integrate with DOM and SAXJDOM should integrate with DOM and SAX
–– Support reading and writing DOM documents andSupport reading and writing DOM documents and

SAX eventsSAX events
–– Support runtime plug-in of Support runtime plug-in of anyany DOM or SAX parserDOM or SAX parser
–– Easy conversion from DOM/SAX to JDOMEasy conversion from DOM/SAX to JDOM
–– Easy conversion from JDOM to DOM/SAXEasy conversion from JDOM to DOM/SAX

•• JDOM should stay current with the latest XMLJDOM should stay current with the latest XML
standardsstandards
–– DOM Level 2, SAX 2.0, XML SchemaDOM Level 2, SAX 2.0, XML Schema

•• JDOM does not need to solve every problemJDOM does not need to solve every problem
–– It should solve 80% of the problems with 20% ofIt should solve 80% of the problems with 20% of

the effortthe effort
–– We think we got the ratios to 90% / 10%We think we got the ratios to 90% / 10%

Scratching an ItchScratching an Itch

•• JAXP wasn’t aroundJAXP wasn’t around
–– Needed parser independence in DOM and SAXNeeded parser independence in DOM and SAX
–– Had user base using variety of parsersHad user base using variety of parsers
–– Now integrates with JAXP 1.1Now integrates with JAXP 1.1
–– Expected to beExpected to be part of JAXP version.next part of JAXP version.next

•• Why not use DOM:Why not use DOM:
–– Same API on multiple languages, Same API on multiple languages, defined usingdefined using

IDLIDL
–– Foreign to the Java environment, Java programmerForeign to the Java environment, Java programmer
–– Fairly heavyweight in memoryFairly heavyweight in memory

•• Why not use SAX:Why not use SAX:
–– No document modification, random access, orNo document modification, random access, or

outputoutput
–– Fairly steep learning curve to use correctlyFairly steep learning curve to use correctly

Do you need JDOM?Do you need JDOM?

•• JDOM is a lightweight APIJDOM is a lightweight API
–– Its design allows it to hold less in memoryIts design allows it to hold less in memory

•• JDOM can represent a full documentJDOM can represent a full document
–– Possible (but not implemented) to build a documentPossible (but not implemented) to build a document

where not all must bewhere not all must be in memory at once in memory at once

•• JDOM supports document modificationJDOM supports document modification
–– And document creation from scratch, no "factory"And document creation from scratch, no "factory"

•• JDOM is easy to learnJDOM is easy to learn
–– Optimized for Java programmersOptimized for Java programmers
–– Doesn't require in-depth XML knowledgeDoesn't require in-depth XML knowledge
–– Allows easing into SAX and DOM, if neededAllows easing into SAX and DOM, if needed
–– Easy to use namespaces, validationEasy to use namespaces, validation

JDOM Reading and WritingJDOM Reading and Writing

(No Arithmetic)(No Arithmetic)

Package StructurePackage Structure

•• JDOM consists of four packagesJDOM consists of four packages

org.jdom

org.jdom.adapters

org.jdom.input

org.jdom.output

The org.The org.jdomjdom Package Package

•• These classes represent an XML document and XMLThese classes represent an XML document and XML
constructs:constructs:
–– AttributeAttribute
–– CDATACDATA
–– CommentComment
–– DocTypeDocType
–– DocumentDocument
–– ElementElement
–– EntityEntity
–– NamespaceNamespace
–– ProcessingInstructionProcessingInstruction
–– ((PartialListPartialList))
–– ((VerifierVerifier))
–– (Assorted Exceptions)(Assorted Exceptions)

The org.The org.jdomjdom.adapters Package.adapters Package

•• Classes for hooking up JDOM to DOMClasses for hooking up JDOM to DOM
implementations:implementations:
–– AbstractDOMAdapterAbstractDOMAdapter
–– OracleV1DOMAdapterOracleV1DOMAdapter
–– OracleV2DOMAdapterOracleV2DOMAdapter
–– ProjectXDOMAdapterProjectXDOMAdapter
–– XercesDOMAdapterXercesDOMAdapter
–– XML4JDOMAdapterXML4JDOMAdapter
–– CrimsonDOMAdapterCrimsonDOMAdapter

•• RarelyRarely accessed directly (used in accessed directly (used in DOMBuilderDOMBuilder and and
DOMOutputterDOMOutputter))

The org.The org.jdomjdom.input Package.input Package

•• Classes for reading XML from existing sources:Classes for reading XML from existing sources:
–– DOMBuilderDOMBuilder
–– SAXBuilderSAXBuilder

•• Also, outside contributions inAlso, outside contributions in jdom jdom--contribcontrib::
–– ResultSetBuilderResultSetBuilder
–– SpitfireBuilderSpitfireBuilder

Input + JAXPInput + JAXP

•• New support for New support for JAXP-basedJAXP-based input input
–– Allows consistency across applicationsAllows consistency across applications
–– Builders pick up JAXP information and userBuilders pick up JAXP information and user

automaticallyautomatically
–– Sets stage for JAXP version.nextSets stage for JAXP version.next

•• TRAX integration in progressTRAX integration in progress
–– TRAX is part of JAXP 1.1TRAX is part of JAXP 1.1
–– Defines Defines SourceSource and and ResultResult interfaces interfaces
–– Can use Can use JDOMSourceJDOMSource, , JDOMResultJDOMResult
–– Can use Can use SAXSourceSAXSource, , SAXResultSAXResult subclassessubclasses

The org.The org.jdomjdom.output Package.output Package

•• Classes for writing XML to various forms of output:Classes for writing XML to various forms of output:
–– DOMOutputterDOMOutputter
–– SAXOutputterSAXOutputter
–– XMLOutputterXMLOutputter

•• Also, outside contributions inAlso, outside contributions in jdom jdom--contribcontrib::
–– JTreeOutputterJTreeOutputter

General Program FlowGeneral Program Flow

•• Normally XML Document ->Normally XML Document -> SAXBuilder SAXBuilder -> ->
XMLOutputterXMLOutputter

DOM Node(s)

JDOM Document

SAXBuilder

DOMBuilder

XMLOutputter

SAXOutputter

DOMOutputter

XML Document

Direct Build

The Document classThe Document class

•• Documents are represented by theDocuments are represented by the
org.org.jdomjdom.Document.Document class class
–– A lightweight object holding a A lightweight object holding a DocTypeDocType,,
ProcessingInstructionProcessingInstructionss, a root , a root ElementElement,,
and and CommentCommentss

•• It can be constructed from scratch:It can be constructed from scratch:

•• Or it can be constructed from a file, stream, or URL:Or it can be constructed from a file, stream, or URL:

 Document doc = new Document(
 new Element("rootElement"))

 SAXBuilder builder = new SAXBuilder();
 Document doc = builder.build(url);

JDOMJDOM vs vs DOM DOM

•• Here's two ways to create a simple new document:Here's two ways to create a simple new document:

 Document doc = new Document(
 new Element("rootElement")
 .setText("This is a root element"));

 Document myDocument =
 new org.apache.xerces.dom.DocumentImpl();
 // Create the root node and its text node,
 // using the document as a factory
 Element root =
 myDocument.createElement("myRootElement");
 Text text =
 myDocument.createText(
 "This is a root element");

 // Put the nodes into the document tree
 root.appendChild(text);

The Build ProcessThe Build Process

•• A Document can be constructed using any build toolA Document can be constructed using any build tool
–– The SAX build tool uses a SAX parser to create aThe SAX build tool uses a SAX parser to create a

JDOM documentJDOM document

•• Current builders areCurrent builders are SAXBuilder SAXBuilder and and DOMBuilder DOMBuilder
–– org.org.jdomjdom.input..input.SAXBuilderSAXBuilder is fast and is fast and

recommendedrecommended
–– org.org.jdomjdom.input..input.DOMBuilderDOMBuilder is useful for is useful for

reading an existing DOM treereading an existing DOM tree
–– A builder can be written that lazily constructs theA builder can be written that lazily constructs the

Document as neededDocument as needed
–– Other contributed builder: Other contributed builder: ResultSetBuilderResultSetBuilder

Builder ClassesBuilder Classes

•• Builders have optional parameters to specifyBuilders have optional parameters to specify
implementation classes and whether documentimplementation classes and whether document
validation should occur.validation should occur.

•• Not all DOM parsers have the same APINot all DOM parsers have the same API
–– XercesXerces, XML4J, Project X, Oracle, XML4J, Project X, Oracle
–– The The DOMBuilder DOMBuilder adapterClassadapterClass implements implements
org.org.jdomjdom.adapters..adapters.DOMAdapterDOMAdapter

–– Implements standard methods by passing throughImplements standard methods by passing through
to an underlying parserto an underlying parser

–– Adapters for all popular parsers are providedAdapters for all popular parsers are provided
–– Future parsers require just a small adapter classFuture parsers require just a small adapter class

•• Once built, documents are not tied to their build toolOnce built, documents are not tied to their build tool

SAXBuilder(String parserClass, boolean validate);
DOMBuilder(String adapterClass, boolean validate);

The Output ProcessThe Output Process

•• A Document can be written using any output toolA Document can be written using any output tool
–– org.org.jdomjdom.output..output.XMLOutputterXMLOutputter tool writes tool writes

the document as XMLthe document as XML
–– org.org.jdomjdom.output..output.SAXOutputterSAXOutputter tool tool

generates SAX eventsgenerates SAX events
–– org.org.jdomjdom.output..output.DOMOutputterDOMOutputter tool creates tool creates

a DOM documenta DOM document
–– Any custom output tool can be usedAny custom output tool can be used

•• To output a To output a DocumentDocument as XML: as XML:

•• For pretty-output, pass optional parametersFor pretty-output, pass optional parameters
–– Two-space indent, add new linesTwo-space indent, add new lines

 XMLOutputter outputter = new XMLOutputter();
 outputter.output(doc, System.out);

 outputter = new XMLOutputter(" ", true);
 outputter.output(doc, System.out);

In-and-OutIn-and-Out

import java.io.*; import org.jdom.*;
import org.jdom.input.*; import org.jdom.output.*;

public class InAndOut {
 public static void main(String[] args) {
 // Assume filename argument
 String filename = args[0];
 try {
 // Build w/ SAX and JAXP, no validation
 SAXBuilder b = new SAXBuilder();
 // Create the document
 Document doc = b.build(new File(filename));

 // Output as XML to screen
 XMLOutputter outputter = new XMLOutputter();
 outputter.output(doc, System.out);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

JDOM Core FunctionalityJDOM Core Functionality

The The DocType DocType classclass

•• A A DocumentDocument may have a may have a DocTypeDocType

•• This specifies the DTD of the documentThis specifies the DTD of the document
–– It's easy to read and writeIt's easy to read and write

 <!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

DocType docType = doc.getDocType();
System.out.println("Element: " +
 docType.getElementName());
System.out.println("Public ID: " +
 docType.getPublicID());
System.out.println("System ID: " +
 docType.getSystemID());

doc.setDocType(
 new DocType("html", "-//W3C...", "http://..."));

The Element classThe Element class

•• A A DocumentDocument has a root has a root ElementElement::

•• Get the root as an Get the root as an ElementElement object: object:

•• An An ElementElement represents something like represents something like <web-app><web-app>
–– Has access to everything from the openHas access to everything from the open
<web-app><web-app> to the closing to the closing </web-app></web-app>

 <web-app id="demo">
 <description>
 Gotta fit servlets in somewhere!
 </description>
 <distributable/>
 </web-app>

 Element webapp = doc.getRootElement();

Playing with ChildrenPlaying with Children

•• An element may contain child elementsAn element may contain child elements

•• getChildgetChild()() may return null if no child exists may return null if no child exists
•• getChildrengetChildren()() returns an empty list if no children returns an empty list if no children

 // Get a List of direct children as Elements
 List allChildren = element.getChildren();
 out.println("First kid: " +
 ((Element)allChildren.get(0)).getName());

 // Get all direct children with a given name
 List namedChildren = element.getChildren("name");

 // Get the first kid with a given name
 Element kid = element.getChild("name");

 // Namespaces are supported as we'll see later

Playing with GrandchildrenPlaying with Grandchildren

•• Grandkids can be retrieved easily:Grandkids can be retrieved easily:

•• Just watch out for aJust watch out for a NullPointerExceptionNullPointerException!!

 <linux-config>
 <gui>
 <window-manager>
 <name>Enlightenment</name>
 <version>0.16.2</version>
 </window-manager>
 <!-- etc -->
 </gui>
 </linux-config>

 String manager =
 root.getChild("gui")
 .getChild("window-manager")
 .getChild("name")
 .getTextTrim();

Managing the PopulationManaging the Population

•• Children can be added and removed through Children can be added and removed through ListList
manipulation or convenience methods:manipulation or convenience methods:

 List allChildren = element.getChildren();

 // Remove the third child
 allChildren.remove(3);

 // Remove all children named "jack"
 allChildren.removeAll(
 element.getChildren("jack"));
 element.removeChildren("jack");

 // Add a new child
 allChildren.add(new Element("jane"));
 element.addContent(new Element("jane"));

 // Add a new child in the second position
 allChildren.add(1, new Element("second"));

JDOMJDOM vs vs DOM DOM

•• Moving elements is easy in JDOM but tricky in DOMMoving elements is easy in JDOM but tricky in DOM

•• You need to callYou need to call importNodeimportNode()() when moving when moving
between different between different documentsdocuments

Element movable =
 new Element("movableRootElement");
parent1.addContent(movable); // place
parent1.removeContent(movable); // remove
parent2.addContent(movable); // add

Element movable =
 doc1.createElement("movable");
parent1.appendChild(movable); // place
parent1.removeChild(movable); // remove
parent2.appendChild(movable); // add
// This causes an error! Incorrect document!

Making KidsMaking Kids

•• Elements are constructed directly, no factory methodElements are constructed directly, no factory method
neededneeded

•• Some prefer a nesting shortcut, possible sinceSome prefer a nesting shortcut, possible since
addContentaddContent()() returns the returns the ElementElement on which the on which the
child was added:child was added:

•• A subclass of A subclass of ElementElement can be made, already can be made, already
containing child elementscontaining child elements

 Element element = new Element("kid");

 Document doc = new Document(
 new Element("family")
 .addContent(new Element("mom"))
 .addContent(new Element("dad")
 .addContent("kidOfDad")));

 root.addContent(new FooterElement());

Ensuring Well-Ensuring Well-FormednessFormedness

•• The The ElementElement constructor (and all other object constructor (and all other object
constructors) check to make sure the element is legalconstructors) check to make sure the element is legal
–– i.e. the name doesn't contain inappropriatei.e. the name doesn't contain inappropriate

characterscharacters

•• The add and remove methods also check documentThe add and remove methods also check document
structurestructure
–– An element may only exist at one point in the treeAn element may only exist at one point in the tree
–– Only one value can be returned byOnly one value can be returned by getParentgetParent()()
–– No loops in the graph are allowedNo loops in the graph are allowed
–– Exactly one root element must existExactly one root element must exist

Making the <Making the <linuxlinux--configconfig>>

•• This code constructs the This code constructs the <<linuxlinux--configconfig>> seen seen
previously:previously:

 Document doc = new Document(
 new Element("linux-config")
 .addContent(new Element("gui")
 .addContent(new Element("window-manager")
 .addContent(new Element("name")
 .setText("Enlightenment"))
 .addContent(new Element("version")
 .setText("0.16.2"))
)
);

Custom ElementsCustom Elements

•• Imagine every document has a footerImagine every document has a footer

•• You could write aYou could write a FooterElementFooterElement::

<footer>
 <copyright>
 JavaWorld 2000
 </copyright>
</footer>

public class FooterElement extends Element {
 public FooterElement(int year) {
 super("footer");
 addContent(new Element("copyright")
 .setText("JavaWorld " + year));
 }
}

root.addContent(new FooterElement(2001));

Other Custom ElementsOther Custom Elements

•• Other ideas for custom elements:Other ideas for custom elements:
–– An element that uses the proxy pattern to deferAn element that uses the proxy pattern to defer

parsing all document text until requiredparsing all document text until required
–– An element that stores application-specificAn element that stores application-specific

informationinformation
–– An element that auto-conforms to a DTDAn element that auto-conforms to a DTD

•• Different builders can create different Different builders can create different ElementElement
subclassessubclasses

Getting Element AttributesGetting Element Attributes

•• Elements often contain attributes:Elements often contain attributes:

•• Attributes can be retrieved several ways:Attributes can be retrieved several ways:

 <table width="100%" border="0"> </table>

String value =
 table.getAttributeValue("width");

// Get "border" as an int
try {
 value =
 table.getAttribute("border").getIntValue();
}
catch (DataConversionException e) { }

// Passing default values was removed
// Good idea or not?

Setting Element AttributesSetting Element Attributes

•• Element attributes can easily be added or removedElement attributes can easily be added or removed

 // Add an attribute
 table.addAttribute("vspace", "0");

 // Add an attribute more formally
 table.addAttribute(
 new Attribute("name", "value"))

 // Remove an attribute
 table.removeAttribute("border");

 // Remove all attributes
 table.getAttributes().clear();

Reading Element ContentReading Element Content

•• Elements can contain text content:Elements can contain text content:

•• The text content is directly available:The text content is directly available:

•• WhitespaceWhitespace must be preserved but often isn't needed, must be preserved but often isn't needed,
so we have a shortcut for removing extraso we have a shortcut for removing extra whitespace whitespace::

 <description>A cool demo</description>

 String content = element.getText();

 // Remove surrounding whitespace
 // Trim internal whitespace to one space
 element.getTextTrim();

Writing Element ContentWriting Element Content

•• Element text can easily be changed:Element text can easily be changed:

•• Special characters are interpreted correctly:Special characters are interpreted correctly:

•• But you can also create CDATA:But you can also create CDATA:

•• CDATA reads the same as normal, but outputs asCDATA reads the same as normal, but outputs as
CDATA.CDATA.

 // This blows away all current content
 element.setText("A new description");

 element.setText("<xml> content");

 element.addContent(
 new CDATA("<xml> content"));

JDOM Advanced TopicsJDOM Advanced Topics

Mixed ContentMixed Content

•• Sometimes an element may contain comments, textSometimes an element may contain comments, text
content, and childrencontent, and children

•• Text and children can be retrieved as always:Text and children can be retrieved as always:

•• This keeps the standard uses simpleThis keeps the standard uses simple

 <table>
 <!-- Some comment -->
 Some text
 <tr>Some child</tr>
 </table>

 String text = table.getTextTrim();
 Element tr = table.getChild("tr");

Reading Mixed ContentReading Mixed Content
•• To get all content within an To get all content within an ElementElement, use, use

getMixedContentgetMixedContent()()
–– Returns a Returns a ListList containing containing CommentComment, , StringString,,
ProcessingInstructionProcessingInstruction, , CDATACDATA, and, and
ElementElement objects objects

 List mixedContent = table.getMixedContent();
 Iterator i = mixedContent.iterator();
 while (i.hasNext()) {
 Object o = i.next();
 if (o instanceof Comment) {
 // Comment has a toString()
 out.println("Comment: " + o);
 }
 else if (o instanceof String) {
 out.println("String: " + o);
 }
 else if (o instanceof Element) {
 out.println("Element: " +
 ((Element)o).getName());
 }

Manipulating Mixed ContentManipulating Mixed Content

•• The list of mixed content provides direct control over allThe list of mixed content provides direct control over all
the element's content.the element's content.

 List mixedContent = table.getMixedContent();

 // Add a comment at the beginning
 mixedContent.add(
 0, new Comment("Another comment"))

 // Remove the comment
 mixedContent.remove(0);

 // Remove everything
 mixedContent.clear();

The The ProcessingInstruction ProcessingInstruction classclass

•• Some elements haveSome elements have ProcessingInstructionProcessingInstructionss

•• PIs can be retrieved usingPIs can be retrieved using getMixedContentgetMixedContent()() and and
their "attribute" values are directly available:their "attribute" values are directly available:

 <?cocoon-process type="xslt"?>

 if (o instanceof ProcessingInstruction) {
 ProcessingInstruction pi =
 (ProcessingInstruction) o;
 out.println(pi.getTarget());
 out.println(pi.getValue("type"));
 out.println(pi.getData()); // all data
 }

The The ProcessingInstruction ProcessingInstruction classclass

•• When in their common place at the document levelWhen in their common place at the document level
outside the root element, PIs can be retrieved byoutside the root element, PIs can be retrieved by
name:name:

 ProcessingInstruction cp =
 doc.getProcessingInstruction(
 "cocoon-process");
 cp.getValue("type"));

XML NamespacesXML Namespaces

•• Namespaces are a DOM Level 2 additionNamespaces are a DOM Level 2 addition

•• Namespaces allow elements with the same local nameNamespaces allow elements with the same local name
to be treated differentlyto be treated differently
–– ItIt works similarly to Java packages and helps avoid works similarly to Java packages and helps avoid

name collisions.name collisions.

•• Namespaces are used in XML like this:Namespaces are used in XML like this:

<html xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <!-- ... -->
 <xhtml:title>Home Page</xhtml:title>
</html>

JDOM NamespacesJDOM Namespaces

•• Namespace prefix to URI mappings are held staticallyNamespace prefix to URI mappings are held statically
in the in the NamespaceNamespace class class

•• They're declared in JDOM like this:They're declared in JDOM like this:

•• They're passed as optional parameters to mostThey're passed as optional parameters to most
element and attribute manipulation methods:element and attribute manipulation methods:

 List kids = element.getChildren("p", xhtml);
 Element kid = element.getChild("title", xhtml);
 Attribute height = element.getAttribute(
 "height", xhtml);

 Namespace xhtml = Namespace.getNamespace(
 "xhtml", "http://www.w3.org/1999/xhtml");

List DetailsList Details

•• The current implementation usesThe current implementation uses LinkedListLinkedList for for
speedspeed
–– Speeds growing the Speeds growing the ListList, modifying the , modifying the ListList
–– Slows the relatively rare index-based accessSlows the relatively rare index-based access

•• All All ListList objects are mutable objects are mutable

–– Modifications affect the backing documentModifications affect the backing document
–– Other existing list views do not see the changeOther existing list views do not see the change
–– Same as SQLSame as SQL ResultSetResultSetss, etc., etc.

•• Because of its use of collections, JDOM requires JDKBecause of its use of collections, JDOM requires JDK
1.2+ support, or JDK 1.1 with 1.2+ support, or JDK 1.1 with collections.jarcollections.jar

ExceptionsExceptions

•• JDOMExceptionJDOMException is the root exception is the root exception

–– Thrown for build errorsThrown for build errors
–– Always includes a useful error messageAlways includes a useful error message
–– May include a "root cause" exceptionMay include a "root cause" exception

•• Subclasses include:Subclasses include:
–– IllegalAddExceptionIllegalAddException
–– IllegalDataExceptionIllegalDataException
–– IllegalNameExceptionIllegalNameException
–– IllegalTargetExceptionIllegalTargetException
–– DataConversionExceptionDataConversionException

Current StatusCurrent Status

•• Currently JDOM is at Beta 6Currently JDOM is at Beta 6

•• 95% of XML vocabularies compliance95% of XML vocabularies compliance
–– Some work to be done for IDs andSome work to be done for IDs and IDREFsIDREFs
–– Discussion about NamespaceDiscussion about Namespace re-factoring re-factoring
–– Entities and inlineEntities and inline DTDs DTDs still in progress still in progress
–– Some well-formednessSome well-formedness checking work to be donechecking work to be done

•• Speed and memory optimizations yet to be doneSpeed and memory optimizations yet to be done

Extending JDOMExtending JDOM

•• Some possible extensions to JDOM:Some possible extensions to JDOM:
–– XPathXPath (already quite far along, and usable) (already quite far along, and usable)
–– XLinkXLink//XPointerXPointer (follows (follows XPath XPath))
–– XSLT (natively, now usesXSLT (natively, now uses Xalan Xalan))
–– In-memory validationIn-memory validation

Case Studies: JDOM in UseCase Studies: JDOM in Use

Zeus: XML Data BindingZeus: XML Data Binding

•• Uses JDOM in all cases (no DOM or SAX)Uses JDOM in all cases (no DOM or SAX)
–– Improved performance from DOM by 50% inImproved performance from DOM by 50% in

sample documentssample documents
–– Reduced code size by 40% over DOM usage inReduced code size by 40% over DOM usage in

original versionoriginal version
–– Greatly reduced development timeGreatly reduced development time

•• Why not SAX?Why not SAX?
–– Required extensive data structures to beRequired extensive data structures to be

developed for schema processingdeveloped for schema processing
–– Significantly complicated code baseSignificantly complicated code base

•• Why not DOM?Why not DOM?
–– Code bloatCode bloat
–– PerformancePerformance
–– High barrier for community involvementHigh barrier for community involvement

((JavaWorldJavaWorld))

•• Uses JDOM in all cases (no DOM or SAX)Uses JDOM in all cases (no DOM or SAX)
–– Perfect for quick proof of conceptPerfect for quick proof of concept
–– Allowed articles to focus on validation, not DOM orAllowed articles to focus on validation, not DOM or

SAX tricksSAX tricks
–– Catered to all programmers, not just XML gurusCatered to all programmers, not just XML gurus

•• Why not SAX?Why not SAX?
–– Callback methodology not familiar to Callback methodology not familiar to servletservlet

programmersprogrammers
–– Needed write capabilitiesNeeded write capabilities

•• Why not DOM?Why not DOM?
–– SimplicitySimplicity
–– ReadabilityReadability

XMLC Version.Next (XMLC Version.Next (EnhydraEnhydra))

•• Provide JDOM alternative to DOMProvide JDOM alternative to DOM
–– Let developers choose the preferred toolLet developers choose the preferred tool
–– JDOM fits in with the JDOM fits in with the Enhydra Enhydra philosophyphilosophy

•• Why not SAX?Why not SAX?
–– In-memory representation neededIn-memory representation needed
–– AccessorAccessor//mutator mutator methods desiredmethods desired

•• Why is DOM not sufficient?Why is DOM not sufficient?
–– Requires HTML binding for DOMRequires HTML binding for DOM
–– Limits XMLC to a specific parser at distribution timeLimits XMLC to a specific parser at distribution time
–– DOM not adapting to DOM not adapting to XMLC’s XMLC’s needs at any degreeneeds at any degree

of speedof speed

JDOM as JSR-102JDOM as JSR-102

News!News!

•• In late February, JDOM was accepted by the JavaIn late February, JDOM was accepted by the Java
Community Process (JCP) as a Java SpecificationCommunity Process (JCP) as a Java Specification
Request (JSR-102)Request (JSR-102)

•• Sun's comment with their YES vote:Sun's comment with their YES vote:
–– In general we tend to prefer to avoid adding newIn general we tend to prefer to avoid adding new

APIs to the Java platform which replicate theAPIs to the Java platform which replicate the
functionality of existing APIs. However JDOM doesfunctionality of existing APIs. However JDOM does
appear to be significantly easier to use than theappear to be significantly easier to use than the
earlier APIs, so we believe it will be a usefulearlier APIs, so we believe it will be a useful
addition to the platform.addition to the platform.

What It MeansWhat It Means

•• What exactly does this mean?What exactly does this mean?
–– Facilitates JDOM's corporate adoptionFacilitates JDOM's corporate adoption
–– Opens the door for JDOM to be incorporated intoOpens the door for JDOM to be incorporated into

the core Java Platformthe core Java Platform
–– JDOM will still be released as open sourceJDOM will still be released as open source

softwaresoftware
–– Technical discussion will continue to take place onTechnical discussion will continue to take place on

public mailing listspublic mailing lists

•• For more information:For more information:
–– http://java.sun.com/aboutJava/communityprocess/http://java.sun.com/aboutJava/communityprocess/

jsr/jsr_102_jdom.htmljsr/jsr_102_jdom.html

The PeopleThe People

•• Jason Hunter is the "Specification Lead"Jason Hunter is the "Specification Lead"

•• The initial "Expert Group" (in order of acceptance):The initial "Expert Group" (in order of acceptance):
–– Brett McLaughlin (individual, from Lutris)Brett McLaughlin (individual, from Lutris)
–– Jools Enticknap (individual, software consultant)Jools Enticknap (individual, software consultant)
–– James Davidson (individual, from SunJames Davidson (individual, from Sun

Microsystems and an Apache member)Microsystems and an Apache member)
–– Joe Bowbeer (individual, from 360.com)Joe Bowbeer (individual, from 360.com)
–– Philip Nelson (individual, from Omni Resources)Philip Nelson (individual, from Omni Resources)
–– Sun Microsystems (Rajiv Mordani)Sun Microsystems (Rajiv Mordani)

•• Many other individuals and corporations haveMany other individuals and corporations have
responded to the call for experts, none are yet officialresponded to the call for experts, none are yet official

•• The responsibilities of an EG member when discussionThe responsibilities of an EG member when discussion
is public has yet to be determinedis public has yet to be determined

You Too Can GetYou Too Can Get Involved!Involved!

•• Download the softwareDownload the software
–– http://http://jdomjdom.org.org

•• Read the docsRead the docs
–– http://http://jdomjdom.org.org

•• Sign up for the mailing lists (seeSign up for the mailing lists (see jdomjdom.org.org))
–– jdomjdom-announce-announce
–– jdomjdom-interest-interest

•• Java and XMLJava and XML, by Brett McLaughlin, by Brett McLaughlin
–– http://www.http://www.oreillyoreilly.com/catalog/.com/catalog/javaxmljavaxml

•• Help improve the software!Help improve the software!

