
JDOM: How It Works, JDOM: How It Works,
and How It Opened and How It Opened
the Java Processthe Java Process

byby Jason HunterJason Hunter

O'Reilly Open Source Convention 2001O'Reilly Open Source Convention 2001
July,July, 20012001

IntroductionsIntroductions

Jason HunterJason Hunter
jhunterjhunter@@collabcollab.net.net
CollabNetCollabNet
http://http://collabcollab.net .net
http://http://servletsservlets.com.com

Author of Author of
"Java Servlet "Java Servlet Programming,Programming,

2nd Edition" (2nd Edition" (O'Reilly)O'Reilly)

What is JDOM?What is JDOM?

•• JDOM is a way to represent an XML document for JDOM is a way to represent an XML document for
easy and efficient reading, manipulation, and writingeasy and efficient reading, manipulation, and writing
–– Straightforward APIStraightforward API
–– Lightweight and fastLightweight and fast
–– JavaJava--optimizedoptimized

•• Despite the name similarity, it's not build on DOM or Despite the name similarity, it's not build on DOM or
modeled after DOMmodeled after DOM
–– Although it integrates well with DOM and SAXAlthough it integrates well with DOM and SAX

•• An open source project with an ApacheAn open source project with an Apache--style licensestyle license
–– 12001200 developers ondevelopers on jdomjdom--interest (high traffic)interest (high traffic)
–– 10501050 lurkers onlurkers on jdomjdom--announce (low traffic)announce (low traffic)

The JDOM PhilosophyThe JDOM Philosophy

•• JDOM should be straightforward for Java programmersJDOM should be straightforward for Java programmers
–– Use the power of the language (Java 2)Use the power of the language (Java 2)
–– Take advantage of method overloading, the Take advantage of method overloading, the

Collections APIs, reflection, weak referencesCollections APIs, reflection, weak references
–– Provide conveniences like type conversionsProvide conveniences like type conversions

•• JDOM should hide the complexities of XML wherever JDOM should hide the complexities of XML wherever
possiblepossible
–– An Element has content, not a child Text node with An Element has content, not a child Text node with

contentcontent
–– Exceptions should contain useful error messagesExceptions should contain useful error messages
–– Give line numbers and specifics, use no SAX or Give line numbers and specifics, use no SAX or

DOM specificsDOM specifics

More JDOM PhilosophyMore JDOM Philosophy

•• JDOM should integrate with DOM and SAXJDOM should integrate with DOM and SAX
–– Support reading and writing DOM documents and Support reading and writing DOM documents and

SAX eventsSAX events
–– Support runtime plugSupport runtime plug--in of in of anyany DOM or SAX parserDOM or SAX parser
–– Easy conversion from DOM/SAX to JDOMEasy conversion from DOM/SAX to JDOM
–– Easy conversion from JDOM to DOM/SAXEasy conversion from JDOM to DOM/SAX

•• JDOM should stay current with the latest XML JDOM should stay current with the latest XML
standardsstandards
–– DOM Level 2, SAX 2.0, XML SchemaDOM Level 2, SAX 2.0, XML Schema

•• JDOM does not need to solve every problemJDOM does not need to solve every problem
–– It should solve 80% of the problems with 20% of It should solve 80% of the problems with 20% of

the effortthe effort
–– We think we got the ratios to 90% / 10%We think we got the ratios to 90% / 10%

Scratching an ItchScratching an Itch

•• JAXP wasn’t aroundJAXP wasn’t around
–– Needed parser independence in DOM and SAXNeeded parser independence in DOM and SAX
–– Had user base using variety of parsersHad user base using variety of parsers
–– Now integrates with JAXP 1.1Now integrates with JAXP 1.1
–– Expected to beExpected to be part of JAXP version.nextpart of JAXP version.next

•• Why not use DOM:Why not use DOM:
–– Same API on multiple languages, Same API on multiple languages, defined using defined using

IDLIDL
–– Foreign to the Java environment, Java programmerForeign to the Java environment, Java programmer
–– Fairly heavyweight in memoryFairly heavyweight in memory

•• Why not use SAX:Why not use SAX:
–– No document modification, random access, or No document modification, random access, or

outputoutput
–– Fairly steep learning curve to use correctlyFairly steep learning curve to use correctly

JDOM Reading and WritingJDOM Reading and Writing

(No Arithmetic)(No Arithmetic)

Package StructurePackage Structure

•• JDOM consists of JDOM consists of fivefive packagespackages

org.jdom

org.jdom.adapters

org.jdom.input

org.jdom.output

org.jdom.transform

The org.The org.jdomjdom PackagePackage

•• These classes represent an XML document and XML These classes represent an XML document and XML
constructs:constructs:
–– AttributeAttribute
–– CDATACDATA
–– CommentComment
–– DocTypeDocType
–– DocumentDocument
–– ElementElement
–– EntityRefEntityRef
–– NamespaceNamespace
–– ProcessingInstructionProcessingInstruction
–– ((PartialListPartialList))
–– ((VerifierVerifier))
–– (Assorted Exceptions)(Assorted Exceptions)

The org.The org.jdomjdom.input Package.input Package

•• Classes for reading XML from existing sources:Classes for reading XML from existing sources:
–– DOMBuilderDOMBuilder

–– SAXBuilderSAXBuilder

•• Also, outside contributions inAlso, outside contributions in jdomjdom--contribcontrib::
–– ResultSetBuilderResultSetBuilder

–– SpitfireBuilderSpitfireBuilder

•• New support for JAXPNew support for JAXP--based inputbased input
–– Allows consistency across applicationsAllows consistency across applications
–– Builders pick up JAXP information and user Builders pick up JAXP information and user

automaticallyautomatically
–– Sets stage for JAXP version.nextSets stage for JAXP version.next

The org.The org.jdomjdom.output Package.output Package

•• Classes for writing XML to various forms of output:Classes for writing XML to various forms of output:
–– DOMOutputterDOMOutputter

–– SAXOutputterSAXOutputter

–– XMLOutputterXMLOutputter

•• Also, outside contributions inAlso, outside contributions in jdomjdom--contribcontrib::
–– JTreeOutputterJTreeOutputter

org.jdom.transformorg.jdom.transform

•• TRaX is now supported in TRaX is now supported in org.jdom.transformorg.jdom.transform

–– Supports XSLT transformationsSupports XSLT transformations
–– Defines Defines SourceSource and and ResultResult interfacesinterfaces
–– JDOMSourceJDOMSource

–– JDOMResultJDOMResult

General Program FlowGeneral Program Flow

•• Normally XML Document Normally XML Document -->> SAXBuilderSAXBuilder -->>
XMLOutputterXMLOutputter

DOM Node(s)

JDOM Document

SAXBuilder

DOMBuilder

XMLOutputter

SAXOutputter

DOMOutputter

XML Document
Direct Build

The Document classThe Document class

•• Documents are represented by the Documents are represented by the
org.org.jdomjdom.Document.Document classclass
–– A lightweight object holding a A lightweight object holding a DocTypeDocType, ,
ProcessingInstructionProcessingInstructionss, a root , a root ElementElement, ,
and and CommentCommentss

•• It can be constructed from scratch:It can be constructed from scratch:

•• Or it can be constructed from a file, stream, or URL:Or it can be constructed from a file, stream, or URL:

Document doc = new Document(
new Element("rootElement"))

SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(url);

JDOMJDOM vsvs DOMDOM

•• Here's two ways to create a simple new document:Here's two ways to create a simple new document:

Document doc = new Document(
new Element("rootElement")
.setText("This is a root element"));

Document myDocument =
new org.apache.xerces.dom.DocumentImpl();

// Create the root node and its text node,
// using the document as a factory
Element root =
myDocument.createElement("myRootElement");

Text text =
myDocument.createText(
"This is a root element");

// Put the nodes into the document tree
root.appendChild(text);
myDocument.appendChild(root);

The Build ProcessThe Build Process

•• A Document can be constructed using any build toolA Document can be constructed using any build tool
–– The SAX build tool uses a SAX parser to create a The SAX build tool uses a SAX parser to create a

JDOM documentJDOM document

•• Current builders areCurrent builders are SAXBuilderSAXBuilder andand DOMBuilderDOMBuilder
–– org.org.jdomjdom.input..input.SAXBuilderSAXBuilder is fast and is fast and

recommendedrecommended
–– org.org.jdomjdom.input..input.DOMBuilderDOMBuilder is useful for is useful for

reading an existing DOM treereading an existing DOM tree
–– A builder can be written that lazily constructs the A builder can be written that lazily constructs the

Document as neededDocument as needed
–– Other contributed builder: Other contributed builder: ResultSetBuilderResultSetBuilder

Builder ClassesBuilder Classes

•• Builders have optional parameters to specify Builders have optional parameters to specify
implementation classes and whether document implementation classes and whether document
validation should occur.validation should occur.

•• Not all DOM parsers have the same APINot all DOM parsers have the same API
–– XercesXerces, XML4J, Project X, Oracle, XML4J, Project X, Oracle
–– The The DOMBuilder DOMBuilder adapterClassadapterClass implements implements
org.org.jdomjdom.adapters..adapters.DOMAdapterDOMAdapter

–– Implements standard methods by passing through Implements standard methods by passing through
to an underlying parserto an underlying parser

–– Adapters for all popular parsers are providedAdapters for all popular parsers are provided
–– Future parsers require just a small adapter classFuture parsers require just a small adapter class

•• Once built, documents are not tied to their build toolOnce built, documents are not tied to their build tool

SAXBuilder(String parserClass, boolean validate);
DOMBuilder(String adapterClass, boolean validate);

The Output ProcessThe Output Process

•• A Document can be written using any output toolA Document can be written using any output tool
–– org.org.jdomjdom.output..output.XMLOutputterXMLOutputter tool writes tool writes

the document as XMLthe document as XML
–– org.org.jdomjdom.output..output.SAXOutputterSAXOutputter tool tool

generates SAX eventsgenerates SAX events
–– org.org.jdomjdom.output..output.DOMOutputterDOMOutputter tool creates tool creates

a DOM document a DOM document
–– Any custom output tool can be usedAny custom output tool can be used

•• To output a To output a DocumentDocument as XML:as XML:

•• For prettyFor pretty--output, pass optional parametersoutput, pass optional parameters
–– TwoTwo--space indent, add new linesspace indent, add new lines

XMLOutputter outputter = new XMLOutputter();
outputter.output(doc, System.out);

outputter = new XMLOutputter(" ", true);
outputter.output(doc, System.out);

InIn--andand--OutOut
import java.io.*; import org.jdom.*;
import org.jdom.input.*; import org.jdom.output.*;

public class InAndOut {
public static void main(String[] args) {

// Assume filename argument
String filename = args[0];
try {

// Build w/ SAX and JAXP, no validation
SAXBuilder b = new SAXBuilder();
// Create the document
Document doc = b.build(new File(filename));

// Output as XML to screen
XMLOutputter outputter = new XMLOutputter();
outputter.output(doc, System.out);

} catch (Exception e) {
e.printStackTrace();

}
}

}

JDOM Core FunctionalityJDOM Core Functionality

The The DocType DocType classclass

•• A A DocumentDocument may have a may have a DocTypeDocType

•• This specifies the DTD of the documentThis specifies the DTD of the document
–– It's easy to read and writeIt's easy to read and write

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

DocType docType = doc.getDocType();
System.out.println("Element: " +

docType.getElementName());
System.out.println("Public ID: " +

docType.getPublicID());
System.out.println("System ID: " +

docType.getSystemID());

doc.setDocType(
new DocType("html", "-//W3C...", "http://..."));

The Element classThe Element class

•• A A DocumentDocument has a root has a root ElementElement::

•• Get the root as an Get the root as an ElementElement object:object:

•• An An ElementElement represents something like represents something like <web<web--app>app>

–– Has access to everything from the open Has access to everything from the open
<web<web--app>app> to the closing to the closing </web</web--app>app>

<web-app id="demo">
<description>
Gotta fit servlets in somewhere!

</description>
<distributable/>

</web-app>

Element webapp = doc.getRootElement();

Playing with ChildrenPlaying with Children

•• An element may contain child elementsAn element may contain child elements

•• getChildgetChild()() may return null if no child existsmay return null if no child exists
•• getChildrengetChildren()() returns an empty list if no children returns an empty list if no children

existexist

// Get a List of direct children as Elements
List allChildren = element.getChildren();
out.println("First kid: " +

((Element)allChildren.get(0)).getName());

// Get all direct children with a given name
List namedChildren = element.getChildren("name");

// Get the first kid with a given name
Element kid = element.getChild("name");

// Namespaces are supported as we'll see later

Playing with GrandchildrenPlaying with Grandchildren

•• Grandkids can be retrieved easily:Grandkids can be retrieved easily:

•• Just watch out for aJust watch out for a NullPointerExceptionNullPointerException!!

<linux-config>
<gui>

<window-manager>
<name>Enlightenment</name>
<version>0.16.2</version>

</window-manager>
<!-- etc -->

</gui>
</linux-config>

String manager =
root.getChild("gui")

.getChild("window-manager")

.getChild("name")

.getTextTrim();

Managing the PopulationManaging the Population

•• Children can be added and removed through Children can be added and removed through ListList
manipulation or convenience methods:manipulation or convenience methods:

List allChildren = element.getChildren();

// Remove the fourth child
allChildren.remove(3);

// Remove all children named "jack"
allChildren.removeAll(

element.getChildren("jack"));
element.removeChildren("jack");

// Add a new child
allChildren.add(new Element("jane"));
element.addContent(new Element("jane"));

// Add a new child in the second position
allChildren.add(1, new Element("second"));

JDOMJDOM vsvs DOMDOM

•• Moving elements is easy in JDOM but tricky in DOMMoving elements is easy in JDOM but tricky in DOM

•• You need to callYou need to call importNodeimportNode()() when moving when moving
between different between different documentsdocuments

•• There's also an There's also an elt.detach()elt.detach() optionoption

Element movable =
new Element("movableRootElement");

parent1.addContent(movable); // place
parent1.removeContent(movable); // remove
parent2.addContent(movable); // add

Element movable =
doc1.createElement("movable");

parent1.appendChild(movable); // place
parent1.removeChild(movable); // remove
parent2.appendChild(movable); // add
// This causes an error! Incorrect document!

Making KidsMaking Kids

•• Elements are constructed directly, no factory method Elements are constructed directly, no factory method
neededneeded

•• Some prefer a nesting shortcut, possible since Some prefer a nesting shortcut, possible since
addContentaddContent()() returns the returns the ElementElement on which the on which the
child was added:child was added:

•• A subclass of A subclass of ElementElement can be made, already can be made, already
containing child elementscontaining child elements

Element element = new Element("kid");

Document doc = new Document(
new Element("family")

.addContent(new Element("mom"))

.addContent(new Element("dad")
.addContent("kidOfDad")));

root.addContent(new FooterElement());

Ensuring WellEnsuring Well--FormednessFormedness

•• The The ElementElement constructor (and all other object constructor (and all other object
constructors) check to make sure the element is legalconstructors) check to make sure the element is legal
–– i.e. the name doesn't contain inappropriate i.e. the name doesn't contain inappropriate

characterscharacters

•• The add and remove methods also check document The add and remove methods also check document
structurestructure
–– An element may only exist at one point in the treeAn element may only exist at one point in the tree
–– Only one value can be returned byOnly one value can be returned by getParentgetParent()()

–– No loops in the graph are allowedNo loops in the graph are allowed
–– Exactly one root element must existExactly one root element must exist

Making the <Making the <linuxlinux--configconfig>>

•• This code constructs the This code constructs the <<linuxlinux--configconfig>> seen seen
previously:previously:

Document doc = new Document(
new Element("linux-config")

.addContent(new Element("gui")
.addContent(new Element("window-manager")

.addContent(new Element("name")
.setText("Enlightenment"))

.addContent(new Element("version")
.setText("0.16.2"))

)
);

Getting Element AttributesGetting Element Attributes

•• Elements often contain attributes:Elements often contain attributes:

•• Attributes can be retrieved several ways:Attributes can be retrieved several ways:

•• getAttributegetAttribute()() may return null if no such attribute existsmay return null if no such attribute exists

<table width="100%" border="0"> </table>

String value =
table.getAttributeValue("width");

// Get "border" as an int
try {

value =
table.getAttribute("border").getIntValue();

}
catch (DataConversionException e) { }

// Passing default values was removed
// Good idea or not?

Setting Element AttributesSetting Element Attributes

•• Element attributes can easily be added or removedElement attributes can easily be added or removed

// Add an attribute
table.addAttribute("vspace", "0");

// Add an attribute more formally
table.addAttribute(
new Attribute("name", "value"))

// Remove an attribute
table.removeAttribute("border");

// Remove all attributes
table.getAttributes().clear();

Reading Element ContentReading Element Content

•• Elements can contain text content:Elements can contain text content:

•• The text content is directly available:The text content is directly available:

•• WhitespaceWhitespace must be preserved but often isn't needed, must be preserved but often isn't needed,
so we have a shortcut for removing extraso we have a shortcut for removing extra whitespacewhitespace::

<description>A cool demo</description>

String content = element.getText();

// Remove surrounding whitespace
// Trim internal whitespace to one space
element.getTextNormalize();

Writing Element ContentWriting Element Content

•• Element text can easily be changed:Element text can easily be changed:

•• Special characters are interpreted correctly:Special characters are interpreted correctly:

•• But you can also create CDATA:But you can also create CDATA:

•• CDATA reads the same as normal, but outputs as CDATA reads the same as normal, but outputs as
CDATA.CDATA.

// This blows away all current content
element.setText("A new description");

element.setText("<xml> content");

element.addContent(
new CDATA("<xml> content"));

JDOM Advanced TopicsJDOM Advanced Topics

Mixed ContentMixed Content

•• Sometimes an element may contain comments, text Sometimes an element may contain comments, text
content, and childrencontent, and children

•• Text and children can be retrieved as always:Text and children can be retrieved as always:

•• This keeps the standard uses simpleThis keeps the standard uses simple

<table>
<!-- Some comment -->
Some text
<tr>Some child</tr>

</table>

String text = table.getTextTrim();
Element tr = table.getChild("tr");

Reading Mixed ContentReading Mixed Content
•• To get all content within an To get all content within an ElementElement, use, use

getMixedContentgetMixedContent()()
–– Returns a Returns a ListList containing containing CommentComment, , StringString, ,
ProcessingInstructionProcessingInstruction, , CDATACDATA, and , and
ElementElement objects objects

List mixedContent = table.getMixedContent();
Iterator i = mixedContent.iterator();
while (i.hasNext()) {

Object o = i.next();
if (o instanceof Comment) {

// Comment has a toString()
out.println("Comment: " + o);

}
else if (o instanceof String) {

out.println("String: " + o);
}
else if (o instanceof Element) {

out.println("Element: " +
((Element)o).getName());

}
// etc

}

Manipulating Mixed ContentManipulating Mixed Content

•• The list of mixed content provides direct control over all The list of mixed content provides direct control over all
the element's content.the element's content.

List mixedContent = table.getMixedContent();

// Add a comment at the beginning
mixedContent.add(

0, new Comment("Another comment"))

// Remove the comment
mixedContent.remove(0);

// Remove everything
mixedContent.clear();

XML NamespacesXML Namespaces

•• Namespaces are a DOM Level 2 additionNamespaces are a DOM Level 2 addition

•• Namespaces allow elements with the same local name Namespaces allow elements with the same local name
to be treated differentlyto be treated differently
–– ItIt works similarly to Java packages and helps avoid works similarly to Java packages and helps avoid

name collisions.name collisions.

•• Namespaces are used in XML like this:Namespaces are used in XML like this:

<html xmlns:xhtml="http://www.w3.org/1999/xhtml">
<!-- ... -->
<xhtml:title>Home Page</xhtml:title>

</html>

JDOM NamespacesJDOM Namespaces

•• Namespace prefix to URI mappings are held statically Namespace prefix to URI mappings are held statically
in the in the NamespaceNamespace classclass

•• They're declared in JDOM like this:They're declared in JDOM like this:

•• They're passed as optional parameters to most They're passed as optional parameters to most
element and attribute manipulation methods:element and attribute manipulation methods:

List kids = element.getChildren("p", xhtml);
Element kid = element.getChild("title", xhtml);
Attribute height = element.getAttribute(

"height", xhtml);

Namespace xhtml = Namespace.getNamespace(
"xhtml", "http://www.w3.org/1999/xhtml");

List DetailsList Details

•• The current implementation usesThe current implementation uses ArrayListArrayList for for
speedspeed
–– Will be migrating to a Will be migrating to a FilterListFilterList

–– Note that viewing a subset slowsNote that viewing a subset slows the relatively rare the relatively rare
indexindex--based accessbased access

•• ListList objects are mutableobjects are mutable
–– Modifications affect the backing documentModifications affect the backing document
–– Other existing list views do not Other existing list views do not currently seecurrently see the the

change, but will with FilterListchange, but will with FilterList

•• Because of its use of collectionsBecause of its use of collections, JDOM requires JDK , JDOM requires JDK
1.2+ support, or JDK 1.1 with 1.2+ support, or JDK 1.1 with collections.jarcollections.jar

Current StatusCurrent Status

•• Currently JDOM is at Beta Currently JDOM is at Beta 77

•• Pending work:Pending work:
–– Preserve internal DTD subsetsPreserve internal DTD subsets
–– Polish the highPolish the high--end features of the outputterend features of the outputter
–– Discussion about NamespaceDiscussion about Namespace rere--factoringfactoring
–– Some wellSome well--formedness checking work to be doneformedness checking work to be done
–– Formal specificationFormal specification

•• Speed and memory optimizations yet to be Speed and memory optimizations yet to be done!done!

Extending JDOMExtending JDOM

•• Some possible extensions to JDOM:Some possible extensions to JDOM:
–– XPathXPath (already quite far along, and usable)(already quite far along, and usable)
–– XLinkXLink//XPointerXPointer (follows(follows XPathXPath))
–– XSLT (natively, now usesXSLT (natively, now uses XalanXalan))
–– InIn--memory validationmemory validation

JDOM as JSRJDOM as JSR--102102

News!News!

•• In late February, JDOM was accepted by the Java In late February, JDOM was accepted by the Java
Community Process (JCP) as a Java Specification Community Process (JCP) as a Java Specification
Request (JSRRequest (JSR--102)102)

•• Sun's comment with their YES vote:Sun's comment with their YES vote:
–– In general we tend to prefer to avoid adding new In general we tend to prefer to avoid adding new

APIs to the Java platform which replicate the APIs to the Java platform which replicate the
functionality of existing APIs. However JDOM does functionality of existing APIs. However JDOM does
appear to be significantly easier to use than the appear to be significantly easier to use than the
earlier APIs, so we believe it will be a useful earlier APIs, so we believe it will be a useful
addition to the platform.addition to the platform.

What It MeansWhat It Means

•• What exactly does this mean?What exactly does this mean?
–– Facilitates JDOM's corporate adoptionFacilitates JDOM's corporate adoption
–– Opens the door for JDOM to be incorporated into Opens the door for JDOM to be incorporated into

the core Java Platformthe core Java Platform
–– JDOM will still be released as open source JDOM will still be released as open source

softwaresoftware
–– Technical discussion will continue to take place on Technical discussion will continue to take place on

public mailing listspublic mailing lists

•• For more information:For more information:
–– http://java.sun.com/aboutJava/communityprocess/http://java.sun.com/aboutJava/communityprocess/

jsr/jsr_102_jdom.htmljsr/jsr_102_jdom.html

The PeopleThe People

•• Jason Hunter is the "Specification Lead"Jason Hunter is the "Specification Lead"

•• The initial "Expert Group" (in order of acceptance):The initial "Expert Group" (in order of acceptance):
–– Brett McLaughlin (individual, from Lutris)Brett McLaughlin (individual, from Lutris)
–– Jools Enticknap (individual, software consultant)Jools Enticknap (individual, software consultant)
–– James Davidson (individual, from Sun James Davidson (individual, from Sun

Microsystems and an Apache member)Microsystems and an Apache member)
–– Joe Bowbeer (individual, from 360.com)Joe Bowbeer (individual, from 360.com)
–– Philip Nelson (individual, from Omni Resources)Philip Nelson (individual, from Omni Resources)
–– Sun Microsystems (Rajiv Mordani)Sun Microsystems (Rajiv Mordani)
–– CAPS (Bob McWhirter)CAPS (Bob McWhirter)

•• Many other individuals and corporations have Many other individuals and corporations have
responded to the call for experts, none are yet officialresponded to the call for experts, none are yet official

Living in the JCPLiving in the JCP

•• The JCP follows a benevolent dictator modelThe JCP follows a benevolent dictator model
–– Strong spec lead making decisions based on inputStrong spec lead making decisions based on input
–– Leaders may be deposed by a 2/3 vote of expertsLeaders may be deposed by a 2/3 vote of experts
–– But the replacement is from the same company!But the replacement is from the same company!
–– What happens if you depose an individual?What happens if you depose an individual?

•• Open source RIs and TCKs are legitOpen source RIs and TCKs are legit
–– Although the PMO is still learning about thisAlthough the PMO is still learning about this
–– See JSRSee JSR--053 (Servlets/JSPs), JSR053 (Servlets/JSPs), JSR--052 (Taglibs)052 (Taglibs)
–– See JSRSee JSR--080 (USB) which hit resistance080 (USB) which hit resistance

•• Open source independent implementations?Open source independent implementations?
–– Not technically allowed!!Not technically allowed!!
–– Must enforce compatibility requirements, which Must enforce compatibility requirements, which

violates open source; must pass costly TCKviolates open source; must pass costly TCK
–– Working as Apache rep on these issuesWorking as Apache rep on these issues

A Public Expert Group?A Public Expert Group?

•• Unlike all other JSRs, JDOM discussion is publicUnlike all other JSRs, JDOM discussion is public
–– We see no reason to work behind NDAsWe see no reason to work behind NDAs
–– On design issues the list keeps us in touch with On design issues the list keeps us in touch with

people's needs, and people often step up to solve people's needs, and people often step up to solve
issues (i.e. long term serialization)issues (i.e. long term serialization)

–– We use [eg] in the subject line for EG topicsWe use [eg] in the subject line for EG topics

•• Unlike most other JSRs, the JDOM implementation Unlike most other JSRs, the JDOM implementation
leads the JDOM specificationleads the JDOM specification
–– Words on paper don't show all the issuesWords on paper don't show all the issues
–– Witness JSRWitness JSR--047 (Logging)047 (Logging)

•• What's the role of an expert?What's the role of an expert?
–– Similar to that of an Apache MemberSimilar to that of an Apache Member
–– LongLong--term commitment to help as neededterm commitment to help as needed

You Too Can GetYou Too Can Get Involved!Involved!

•• Download the softwareDownload the software
–– http://http://jdomjdom.org.org

•• Read the docsRead the docs
–– http://http://jdomjdom.org.org

•• Sign up for the mailing lists (seeSign up for the mailing lists (see jdomjdom.org.org))
–– jdomjdom--announceannounce
–– jdomjdom--interestinterest

•• Java and XMLJava and XML, by Brett McLaughlin, by Brett McLaughlin
–– http://www.http://www.oreillyoreilly.com/catalog/.com/catalog/javaxmljavaxml

•• Help improve the software!Help improve the software!

