JDOM: How It Works,
and How It Opened
the Java Process

by Jason Hunter

O'Reilly Open Source Convention 2001
July, 2001




Introductions

Jason Hunter
jhunter@collab.net
CollabNet

http://collab.net
http://servilets.com

Author of

43 '"Java Servlet Programming,
Programming 2nd Edition" (O'Reilly)



What 1s JDOM?

JDOM is a way to represent an XML document for
easy and efficient reading, manipulation, and writing

— Straightforward API
— Lightweight and fast
— Java-optimized

Despite the name similarity, it's not build on DOM or
modeled after DOM

— Although it integrates well with DOM and SAX

An open source project with an Apache-style license
— 1200 developers on jdom-interest (high traffic)
— 1050 lurkers on jdom-announce (low traffic)




The JDOM Philosophy

« JDOM should be straightforward for Java programmers
— Use the power of the language (Java 2)

— Take advantage of method overloading, the
Collections APIs, reflection, weak references

— Provide conveniences like type conversions

« JDOM should hide the complexities of XML wherever
possible

— An Element has content, not a child Text node with
content

— Exceptions should contain useful error messages

— Give line numbers and specifics, use no SAX or
DOM specifics




More JDOM Philosophy

« JDOM should integrate with DOM and SAX

— Support reading and writing DOM documents and
SAX events

— Support runtime plug-in of any DOM or SAX parser
— Easy conversion from DOM/SAX to JDOM
— Easy conversion from JDOM to DOM/SAX

« JDOM should stay current with the latest XML
standards

— DOM Level 2, SAX 2.0, XML Schema

« JDOM does not need to solve every problem

— It should solve 80% of the problems with 20% of
the effort

— We think we got the ratios to 90% / 10%




Scratching an ltch

« JAXP wasn’'t around
— Needed parser independence in DOM and SAX
— Had user base using variety of parsers
— Now integrates with JAXP 1.1
— Expected to be part of JAXP version.next

 Why not use DOM:

— Same API on multiple languages, defined using
IDL

— Foreign to the Java environment, Java programmer
— Fairly heavyweight in memory

 Why not use SAX:

— No document modification, random access, or
output

— Fairly steep learning curve to use correctly




JDOM Reading and Writing

(No Arithmetic)




Package Structure

« JDOM consists of five packages




The org.jJdom Package

 These classes represent an XML document and XML
constructs:

— Attribute

— CDATA

— Comment

— DocType

— Document

— Element

— EntityRef

— Namespace

— Processinglnstruction
— (PartiralList)

— (Verifier)

— (Assorted Exceptions)




The org.jJdom.input Package

o Classes for reading XML from existing sources:
— DOMBuin Ider

— SAXBuirlder

* Also, outside contributions in jdom-contrib:
— ResultSetBuilder

— SpitfireBuilder

 New support for JAXP-based input
— Allows consistency across applications

— Builders pick up JAXP information and user
automatically

— Sets stage for JAXP version.next




The org.jJdom.output Package

o Classes for writing XML to various forms of output:
— DOMOutputter

— SAXOutputter
— XMLOutputter

* Also, outside contributions in jdom-contrib:
— JTreeOutputter




org.jdom.transform

« TRaX Iis now supported in org- jdom. transform
— Supports XSLT transformations
— Defines Source and Resul t interfaces
— JDOMSource
— JDOMResult




General Program Flow

 Normally XML Document -> SAXBuilder ->
XMLOutputter

Direct Build

JDOM Document

SAXBuilder
DOMBuilder




The Document class

« Documents are represented by the
org. jdom.Document class

— A lightweight object holding a DocType,
Processinglnstructions, a root Element,
and Comments

|t can be constructed from scratch:

Document doc = new Document(
new Element(''rootElement'))

e Or it can be constructed from a file, stream, or URL:

SAXBuilder builder = new SAXBuilder(Q);
Document doc = builder_burld(url);




JDOM vs DOM

« Here's two ways to create a simple new document:

Document doc = new Document(
new Element(''rootElement'")
.setText("'This 1s a root element'));

Document myDocument =

new org.apache.xerces.dom.Documentimpl();
// Create the root node and 1ts text node,
// using the document as a factory
Element root =

myDocument.createElement("'myRootElement™);
Text text =

myDocument.createText(

"This 1s a root element");

// Put the nodes 1nto the document tree
root.appendChild(text);
myDocument.appendChild(root);




The Build Process

« A Document can be constructed using any build tool

— The SAX build tool uses a SAX parser to create a
JDOM document

o Current builders are SAXBuilder and DOMBuilder
— org.jdom. input.SAXBuil lder is fast and
recommended
— org.- jdom. input.DOMBui Ider is useful for
reading an existing DOM tree

— A builder can be written that lazily constructs the
Document as needed

— Other contributed builder: ResultSetBui lder




Builder Classes

 Builders have optional parameters to specify
Implementation classes and whether document
validation should occur.

SAXBui lder(String parserClass, boolean validate);
DOMBui lder(String adapterClass, boolean validate);

 Not all DOM parsers have the same API
— Xerces, XML4J, Project X, Oracle

— The DOMBuilder adapterClass implements
org. jdom.adapters.DOMAdapter

— Implements standard methods by passing through
to an underlying parser

— Adapters for all popular parsers are provided
— Future parsers require just a small adapter class

e Once built, documents are not tied to their build tool




The Output Process

A Document can be written using any output tool

— 0org.jdom.output.XMLOutputter tool writes
the document as XML

— 0rg.-jdom.output.SAXOutputter tool
generates SAX events

— org- jdom.output.DOMOutputter tool creates
a DOM document

— Any custom output tool can be used

To output a Document as XML.:

XMLOutputter outputter = new XMLOutputter();
outputter.output(doc, System.out);

For pretty-output, pass optional parameters
— Two-space indent, add new lines

outputter = new XMLOutputter(' ', true);
outputter.output(doc, System.out);




In-and-Out

import java.i10.*; import org.jdom.*;
import org.jdom.input.*; 1import org.jdom.output.*;

public class InAndOut {
public static void main(String[] args) {

// Assume fTilename argument

String filename = args|[0O];

try {
// Build w/ SAX and JAXP, no validation
SAXBuilder b = new SAXBuilder();
// Create the document
Document doc = b.build(new File(filename));

// Output as XML to screen
XMLOutputter outputter = new XMLOutputter();
outputter.output(doc, System.out);
} catch (Exception e) {
e.printStackTrace();




JDOM Core Functionality




The DocType class

« A Document may have a DocType

<IDOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional .dtd'>

e This specifies the DTD of the document
— It's easy to read and write

DocType docType = doc.getDocType();
System.out.printin("Element: " +
docType.getElementName());
System.out.printin("Public ID: " +
docType.getPublicID());
System.out.printIn("System ID: " +
docType.getSystemID());

doc.setDocType(
new DocType("html*, "-//W3C...", "http://..."));




The Element class

A Document has a root Element:

<web-app 1d=""demo"'>
<description>
Gotta fit servlets 1In somewhere!
</description>
<distributable/>
</web-app>

Get the root as an Element object:

Element webapp = doc.getRootElement();

An Element represents something like <web-app>

— Has access to everything from the open
<web-app> to the closing </web-app>




Playing with Children

 An element may contain child elements

// Get a List of direct children as Elements

List allChildren = element.getChildren();

out.printIn("First kid: " +
((Element)allChildren.get(0)) .getName());

// Get all direct children with a given name
List namedChildren = element.getChildren("'name');

// Get the fTirst kid with a given name
Element kid = element.getChild("name');

// Namespaces are supported as we"ll see later

e getChild() may return null if no child exists

e getChildren() returns an empty list if no children
exist




Playing with Grandchildren

<linux-config>
<gui>
<window-manager>
<name>Enl1ghtenment</name>
<version>0.16.2</version>
</window-manager>
<l-- etc -->
</gui>
</li1nux-config>

« Grandkids can be retrieved easily:

String manager =
root.getChild('gui™)
-.getChild("'window-manager"'")
.getChild(''name")
.getTextTrim();

e Just watch out for a Nul IPointerException!




Managing the Population

Children can be added and removed through List
manipulation or convenience methods:

List allChildren = element.getChildren();

// Remove the fourth child
allChildren.remove(3);

// Remove all children named "jack™

allChildren.removeAll(
element.getChildren(*'jack™));

element.removeChildren('jack™™);

// Add a new child
allChildren.add(new Element(*jane™));
element.addContent(new Element(''jane'));

// Add a new child 1n the second position
allChildren.add(1, new Element(''second"));




JDOM vs DOM

 Moving elements is easy in JDOM but tricky in DOM

Element movable =

new Element(''movableRootElement™);
parentl.addContent(movable); // place
parentl.removeContent(movable); // remove
parent2.addContent(movable); // add

Element movable =
docl.createElement("'movable™);

parentl.appendChild(movable); // place

parentl.removeChild(movable); // remove

parent2.appendChild(movable); // add

// This causes an error! Incorrect document!

* You need to call importNode() when moving
between different documents

« There's also an elt.detach() option




Making Kids

 Elements are constructed directly, no factory method
needed

Element element = new Element("kid");

« Some prefer a nesting shortcut, possible since
addContent() returns the Element on which the

child was added:

Document doc = new Document(
new Element('family")
.addContent(new Element("mom'))
.addContent(new Element(''dad')
.addContent("'kidOfDad'")));

A subclass of Element can be made, already
containing child elements

root.addContent(new FooterElement());




Ensuring Well-Formedness

The Element constructor (and all other object
constructors) check to make sure the element is legal

— I.e. the name doesn't contain inappropriate
characters

The add and remove methods also check document
structure

— An element may only exist at one point in the tree
— Only one value can be returned by getParent()
— No loops in the graph are allowed

— Exactly one root element must exist




Making the <linux-config>

« This code constructs the <l 1nux-config> seen
previously:

Document doc = new Document(
new Element(linux-config"™)
.addContent(new Element(''gui'’)
.addContent(new Element(*'window-manager")
.addContent(new Element("'name')
.setText(""Enlightenment'))
.addContent(new Element(''version')
.setText("'0.16.2'"))




Getting Element Attributes

e Elements often contain attributes:

<table width=""100%" border=""0'""> </table>

« Attributes can be retrieved several ways:

String value =
table.getAttributevValue('width");

// Get "border'™ as an int

try {
value =

table.getAttribute('border') .getintvValue();
+

catch (DataConversionkException e) { }

// Passing default values was removed
// Good i1dea or not?

e getAttribute() may return null if no such attribute exists




Setting Element Attributes

Element attributes can easily be added or removed

// Add an attribute
table.addAttribute('vspace'™, "0');

// Add an attribute more formally
table.addAttribute(
new Attribute('name', "value'))

// Remove an attribute
table.removeAttribute(''border™);

// Remove all attributes
table.getAttributes().clear();




Reading Element Content

e Elements can contain text content:

<description>A cool demo</description>

 The text content is directly available:

String content = element.getText();

 Whitespace must be preserved but often isn't needed,
so we have a shortcut for removing extra whitespace:

// Remove surrounding whitespace
// Trim internal whitespace to one space
element.getTextNormalize();




Writing Element Content

Element text can easily be changed:

// This blows away all current content
element.setText("'A new description™);

Special characters are interpreted correctly:

element.setText("'<xml> content");

But you can also create CDATA:

element.addContent(
new CDATA('<xml> content''));

CDATA reads the same as normal, but outputs as
CDATA.




JDOM Advanced Topics




Mixed Content

¢ Sometimes an element may contain comments, text
content, and children

<table>
<l-- Some comment -->
Some text
<tr>Some child</tr>
</table>

« Text and children can be retrieved as always:

String text = table.getTextTrim(Q);
Element tr = table.getChild('tr');

« This keeps the standard uses simple




Reading Mixed Content

 To get all content within an Element, use
getMixedContent()

— Returns a List containing Comment, String,
Processinglnstruction, CDATA, and
Element objects

List mixedContent = table.getMixedContent();
Iterator 1 = mixedContent.iterator();
while (1.hasNext()) {
Object o = 1.next();
iIT (o iInstanceof Comment) {
// Comment has a toString()
out.printin(''Comment: " + 0);
}
else 1T (0o Instanceof String) {
out.printIn(’'String: " + 0);
}

else 1T (0o iInstanceof Element) {
out.printin("Element: " +
((Element)o) .getName());

+
// etc

}




Manipulating Mixed Content

 The list of mixed content provides direct control over all
the element's content.

List mixedContent = table.getMixedContent();

// Add a comment at the beginning
mixedContent.add(
O, new Comment(''Another comment'))

// Remove the comment
mixedContent.remove(0);

// Remove everything
mixedContent.clear();




XML Namespaces

« Namespaces are a DOM Level 2 addition

« Namespaces allow elements with the same local name
to be treated differently

— It works similarly to Java packages and helps avoid
name collisions.

« Namespaces are used in XML like this:

<html xmlIns:xhtml="http://www.w3.0rg/1999/xhtml"">
<l—— __. -=->
<xhtml:title>Home Page</xhtml:title>

</html>




JDOM Namespaces

« Namespace prefix to URI mappings are held statically
In the Namespace class

« They're declared in JDOM like this:

Namespace xhtml = Namespace.getNamespace(
"xhtml", "http://www.w3.0rg/1999/xhtml"");

 They're passed as optional parameters to most
element and attribute manipulation methods:

List kids = element.getChildren(*p', xhtml);

Element kid = element.getChild("title", xhtml);

Attribute height = element.getAttribute(
"height", xhtml);




List Detalls

e The current implementation uses ArrayL 1st for
Speed

— Will be migrating to a FilterList

— Note that viewing a subset slows the relatively rare
Index-based access

e List objects are mutable

— Modifications affect the backing document

— Other existing list views do not currently see the
change, but will with FilterList

e Because of its use of collections, JDOM requires JDK
1.2+ support, or JDK 1.1 with col lections. jar




Current Status

e Currently JDOM is at Beta 7

 Pending work:
— Preserve internal DTD subsets
— Polish the high-end features of the outputter
— Discussion about Namespace re-factoring
— Some well-formedness checking work to be done
— Formal specification

« Speed and memory optimizations yet to be done!




Extending JDOM

« Some possible extensions to JDOM:
— XPath (already quite far along, and usable)
— XLink/XPointer (follows XPath)
— XSLT (natively, now uses Xalan)
— In-memory validation




JDOM as JSR-102



News!

* |n late February, JDOM was accepted by the Java
Community Process (JCP) as a Java Specification
Request (JSR-102)

e Sun's comment with their YES vote;

— In general we tend to prefer to avoid adding new
APIs to the Java platform which replicate the
functionality of existing APIs. However JDOM does
appear to be significantly easier to use than the
earlier APIs, so we believe it will be a useful
addition to the platform.




What It Means

 What exactly does this mean?
— Facilitates JDOM's corporate adoption

— Opens the door for JDOM to be incorporated into
the core Java Platform

— JDOM will still be released as open source
software

— Technical discussion will continue to take place on
public mailing lists

e For more information:
— http://java.sun.com/aboutJava/communityprocess/
jsr/jsr_102_jdom.html




The People

o Jason Hunter Is the "Specification Lead"

 The initial "Expert Group" (in order of acceptance):

Brett McLaughlin (individual, from Lutris)
Jools Enticknap (individual, software consultant)

James Davidson (individual, from Sun
Microsystems and an Apache member)

Joe Bowbeer (individual, from 360.com)

Philip Nelson (individual, from Omni Resources)
Sun Microsystems (Rajiv Mordani)

CAPS (Bob McWhirter)

e Many other individuals and corporations have
responded to the call for experts, none are yet official




Living In the JCP

« The JCP follows a benevolent dictator model
— Strong spec lead making decisions based on input
— Leaders may be deposed by a 2/3 vote of experts
— But the replacement is from the same company!
— What happens if you depose an individual?

« Open source RIs and TCKs are leqgit
— Although the PMO is still learning about this
— See JSR-053 (Servlets/JSPs), JSR-052 (Taglibs)
— See JSR-080 (USB) which hit resistance

e Open source independent implementations?
— Not technically allowed!!

— Must enforce compatibility requirements, which
violates open source; must pass costly TCK

— Working as Apache rep on these issues




A Public Expert Group?

o Unlike all other JSRs, JDOM discussion is public
— We see no reason to work behind NDASs

— On design issues the list keeps us in touch with

people's needs, and people often step up to solve
Issues (i.e. long term serialization)

— We use [eg] in the subject line for EG topics

« Unlike most other JSRs, the JIDOM implementation
leads the JDOM specification

— Words on paper don't show all the issues
— Witness JSR-047 (Logging)

 What's the role of an expert?
— Similar to that of an Apache Member
— Long-term commitment to help as needed




You Too Can Get Involved!

e Download the software
— http://jdom.org

* Read the docs
— http://jdom.org

» Sign up for the mailing lists (see jdom.org)
— jdom-announce
— jdom-interest

e Java and XML, by Brett McLaughlin
— http://www.oreirlly.com/catalog/javaxml

 Help improve the software!




